KLEENE CLOSURE AND STATE COMPLEXITY

被引:6
作者
Palmovsky, Matus [1 ]
机构
[1] Slovak Acad Sci, Math Inst, Gresakova 6, Kosice 04001, Slovakia
来源
RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS | 2016年 / 50卷 / 03期
关键词
Regular languages; finite automata; Kleene closure; state complexity; REGULAR LANGUAGES; FINITE AUTOMATA; MAGIC NUMBERS;
D O I
10.1051/ita/2016024
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that the automaton presented by Maslov [Soviet Math. Doklady 11 (1970) 13731375] meets the upper bound 3/4 center dot 2(n) on the state complexity of Kleene closure. Our main result shows that the upper bounds 2(n-1) + 2(n-1-k) on the state complexity of Kleene closure of a language accepted by an n-state DFA with k final states are tight for every k with 1 <= k <= n in the binary case. We also study Kleene Closure on prefix-free languages. In the case of prefix-free languages, the Kleene closure may attain just three possible complexities n - 2, n - 1, and n. We give some survey of our computations.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1970, Soviet Mathematics Doklady
[2]  
BRZOZOWSKI JA, 1980, THEOR COMPUT SCI, V10, P19, DOI 10.1016/0304-3975(80)90069-9
[3]  
Cevorova K., 2013, LECT NOTES COMPUT SC, V8031, P277
[4]  
Gao Y., 2016, TECHNICAL REPORT
[5]   State complexity of union and intersection of star on k regular languages [J].
Gao, Yuan ;
Kari, Lila ;
Yu, Sheng .
THEORETICAL COMPUTER SCIENCE, 2012, 429 :98-107
[6]   Magic numbers in the state hierarchy of finite automata [J].
Geffert, Villam .
INFORMATION AND COMPUTATION, 2007, 205 (11) :1652-1670
[7]  
Han Y., 2009, AUTOMATA FORMAL LANG, P99
[8]  
Hopcroft J., 1971, STANCS71190 COMP SCI
[9]   Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs [J].
Iwama, K ;
Kambayashi, Y ;
Takaki, K .
THEORETICAL COMPUTER SCIENCE, 2000, 237 (1-2) :485-494
[10]  
Iwama K., 1997, THEORET COMPUT SCI