Five squares in arithmetic progression over quadratic fields

被引:5
作者
Gonzalez-Jimenez, Enrique [1 ,2 ]
Xarles, Xavier [3 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Inst Ciencias Matemat ICMat, Madrid 28049, Spain
[3] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Arithmetic progressions; squares; quadratic fields; elliptic curve Chabauty method; Mordell-Weil sieve; BRAUER-MANIN OBSTRUCTION; RATIONAL-POINTS; ELLIPTIC-CURVES; CHABAUTY;
D O I
10.4171/RMI/754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide several criteria to show over which quadratic number fields Q(root D) there is a nonconstant arithmetic progression of five squares. This is carried out by translating the problem to the determination of when some genus five curves C-D defined over Q have rational points, and then by using a Mordell-Weil sieve argument. Using an elliptic curve Chabauty-like method, we prove that, up to equivalence, the only nonconstant arithmetic progression of five squares over Q(root 409) is 7(2), 13(2), 17(2), 409, 23(2). Furthermore, we provide an algorithm for constructing all the nonconstant arithmetic progressions of five squares over all quadratic fields. Finally, we state several problems and conjectures related to this problem.
引用
收藏
页码:1211 / 1238
页数:28
相关论文
共 30 条
[1]  
[Anonymous], 1986, GRADUATE TEXTS MATH
[2]   SQUARES IN ARITHMETIC PROGRESSIONS [J].
BOMBIERI, E ;
GRANVILLE, A ;
PINTZ, J .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (03) :369-385
[3]  
Bombieri E., 2002, REND LINCEI-MAT APPL, V13, p[9, 69]
[4]  
Bosma W., 2009, HDB MAGMA FUNCTIONS, V15-6
[5]   Towers of 2-covers of hyperelliptic curves [J].
Bruin, N ;
Flynn, EV .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (11) :4329-4347
[6]  
Bruin N, 2003, J REINE ANGEW MATH, V562, P27
[7]  
Bruin N., 1999, THESIS U LEIDEN
[8]   The Mordell-Weil sieve: proving non-existence of rational points on curves [J].
Bruin, Nils ;
Stoll, Michael .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 :272-306
[9]  
Chabauty C, 1941, CR HEBD ACAD SCI, V212, P882
[10]   EFFECTIVE CHABAUTY [J].
COLEMAN, RF .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (03) :765-770