Data and model uncertainty estimation for linear inversion

被引:33
作者
van Wijk, K [1 ]
Scales, JA
Navidi, W
Tenorio, L
机构
[1] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA
[2] Colorado Sch Mines, Ctr Wave Phenomena, Golden, CO 80401 USA
[3] Colorado Sch Mines, Dept Math, Golden, CO 80401 USA
[4] Ecole Super Phys & Chim Ind Ville Paris, Paris, France
关键词
confidence intervals; error analysis; inversion; L; -curve;
D O I
10.1046/j.1365-246X.2002.01660.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Inverse theory concerns the problem of making inferences about physical systems from indirect noisy measurements. Information about the errors in the observations is essential to solve any inverse problem, otherwise it is impossible to say when a feature 'fits the data'. In practice, however, one seldom has a direct estimate of the data errors. We exploit the trade-off between data prediction and model or data structure to determine both model-independent and model-based estimates of the noise characteristics from a single realization of the data. Noise estimates are then used to characterize the set of reasonable models that fit the data, for example, by intersecting prior model parameter constraints with the set of data fitting models. This prior information can also be used to set bounds on the bias. We illustrate our methods with synthetic examples of vertical seismic profiling and cross-well tomography.
引用
收藏
页码:625 / 632
页数:8
相关论文
共 22 条
[1]  
Bates D.M., 1998, NONLINEAR REGRESSION
[2]   Confidence intervals for nonparametric curve estimates: Toward more uniform pointwise coverage [J].
Cummins, DJ ;
Filloon, TG ;
Nychka, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) :233-246
[3]   SOLVING FOR THE THICKNESS AND VELOCITY OF THE WEATHERING LAYER USING 2-D REFRACTION TOMOGRAPHY [J].
DOCHERTY, P .
GEOPHYSICS, 1992, 57 (10) :1307-1318
[4]   Adapting to unknown smoothness via wavelet shrinkage [J].
Donoho, DL ;
Johnstone, IM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1200-1224
[5]   Inverse problems as statistics [J].
Evans, SN ;
Stark, PB .
INVERSE PROBLEMS, 2002, 18 (04) :R55-R97
[6]   Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis [J].
Gouveia, WP ;
Scales, JA .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1998, 103 (B2) :2759-2779
[7]  
Green P. J., 1993, Nonparametric regression and generalized linear models: a roughness penalty approach
[8]  
Lawson C.L., 1974, SOLVING LEAST SQUARE
[9]  
LI Y, 1999, ANN M ABSTR SOC EXPL, P251
[10]   Local Bayesian inversion: Theoretical developments [J].
Moraes, FS ;
Scales, JA .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2000, 141 (03) :713-723