A practical approach to docking of zinc metalloproteinase inhibitors

被引:89
作者
Hu, X
Balaz, S
Shelver, WH [1 ]
机构
[1] N Dakota State Univ, Dept Pharmaceut Sci, Fargo, ND 58105 USA
[2] N Dakota State Univ, Ctr Protease Res, Fargo, ND 58105 USA
关键词
metalloproteinases; zinc binding group (ZBG); comparative docking; consensus scoring; virtual screening;
D O I
10.1016/j.jmgm.2003.11.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Forty zinc-dependent metalloproteinase/ligand complexes with known crystal structures were re-docked using five docking/scoring approaches (DOCK, FlexX, DrugScore, GOLD, and AutoDock). Correct geometry of the coordination bonds between the ligand's zinc binding group (ZBG) and the catalytic zinc is important for docking accuracy and scoring reliability. More than 75% of docked poses with RMSD less than 2 Angstrom were found to have appropriate ZBG binding, but for poor ZBG binding, about 95% of poses failed to dock correctly. Elimination of poses with inappropriate zinc binding resulted in better binding energy predictions that were further improved by dividing the ligands into subsets according to the ZBG (carboxylates, hydroxamates, and phosphorus containing groups). After a subset re-scoring using the regression functions obtained for individual subsets, DrugScore was able to explain 77% and the consensus scoring scheme X-CSCORE even 88% of variance in binding energies. The approach combining ZBG-based pose selection and subset re-scoring improved the hit rate in virtual screening for metalloproteinase inhibitors for all tested methods by 4-16%. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:293 / 307
页数:15
相关论文
共 70 条
[1]   Analysis of zinc binding sites in protein crystal structures [J].
Alberts, IL ;
Nadassy, K ;
Wodak, SJ .
PROTEIN SCIENCE, 1998, 7 (08) :1700-1716
[2]  
[Anonymous], SYBYL MOL MOD SOFTW
[3]  
Baxter CA, 1998, PROTEINS, V33, P367, DOI 10.1002/(SICI)1097-0134(19981115)33:3<367::AID-PROT6>3.0.CO
[4]  
2-W
[5]   STROMELYSIN-1 - 3-DIMENSIONAL STRUCTURE OF THE INHIBITED CATALYTIC DOMAIN AND OF THE C-TRUNCATED PROENZYME [J].
BECKER, JW ;
MARCY, AI ;
ROKOSZ, LL ;
AXEL, MG ;
BURBAUM, JJ ;
FITZGERALD, PMD ;
CAMERON, PM ;
ESSER, CK ;
HAGMANN, WK ;
HERMES, JD ;
SPRINGER, JP .
PROTEIN SCIENCE, 1995, 4 (10) :1966-1976
[6]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[7]   Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations [J].
Bissantz, C ;
Folkers, G ;
Rognan, D .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (25) :4759-4767
[8]   THE X-RAY CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN NEUTROPHIL COLLAGENASE INHIBITED BY A SUBSTRATE-ANALOG REVEALS THE ESSENTIALS FOR CATALYSIS AND SPECIFICITY [J].
BODE, W ;
REINEMER, P ;
HUBER, R ;
KLEINE, T ;
SCHNIERER, S ;
TSCHESCHE, H .
EMBO JOURNAL, 1994, 13 (06) :1263-1269
[9]   Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs [J].
Bohm, HJ .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1998, 12 (04) :309-323
[10]   Structure of malonic acid-based inhibitors bound to human neutrophil collagenase. A new binding mode explains apparently anomalous data [J].
Brandstetter, H ;
Engh, RA ;
Von Roedern, EG ;
Moroder, L ;
Huber, R ;
Bode, W ;
Grams, F .
PROTEIN SCIENCE, 1998, 7 (06) :1303-1309