Bi-orthogonal mutually unbiased bases for N-qubit systems

被引:0
|
作者
Diaz, Juan J. [1 ]
Sainz, Isabel [1 ]
Klimov, Andrei B. [1 ,2 ]
机构
[1] Univ Guadalajara, Dept Fis, Revoluc 1500, Guadalajara 44420, Jalisco, Mexico
[2] Univ Concepcion, Dept Fis, Ctr Quantum Opt & Quantum Informat, Ctr Opt & Photon, Casilla 160C, Concepcion, Chile
关键词
quantum tomography; non orthogonal bases; mutually unbiased bases; STATE; ENTANGLEMENT;
D O I
10.1088/1751-8121/aa532c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have developed a general method for constructing a set of non-orthogonal bases with equal separations between all different basis' states for N-qubit systems. Using these bases we derive an explicit expression for the optimal tomography in non-orthogonal bases and discuss the amount of nonclassical resources required for the bases preparation and the precision of the reconstructed state. The special two-qubit case is analysed separately.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Average fidelity in n-qubit systems
    Cabrera, R.
    Baylis, W. E.
    PHYSICS LETTERS A, 2007, 368 (1-2) : 25 - 28
  • [22] Unitarily inequivalent mutually unbiased bases for n qubits
    Sehrawat, Arun
    Klimov, Andrei B.
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [23] A Rigidity Property of Complete Systems of Mutually Unbiased Bases
    Matolcsi, Mate
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2021, 28 (03):
  • [24] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in Multipartite Systems
    Ya-Jing Zhang
    Hui Zhao
    Naihuan Jing
    Shao-Ming Fei
    International Journal of Theoretical Physics, 2017, 56 : 3425 - 3430
  • [25] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in Multipartite Systems
    Zhang, Ya-Jing
    Zhao, Hui
    Jing, Naihuan
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (11) : 3425 - 3430
  • [26] Irreducible Magic Sets for n-Qubit Systems
    Trandafir, Stefan
    Lisonek, Petr
    Cabello, Adan
    PHYSICAL REVIEW LETTERS, 2022, 129 (20)
  • [27] A novel synchronization method for bi-orthogonal modulation systems
    Habuchi, H
    Usui, Y
    PIMRC 2000: 11TH IEEE INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2000, : 610 - 614
  • [28] Generating Mutually Unbiased Bases and Discrete Wigner Functions for Three-Qubit System
    Aliakbarzadeh, Mojtaba
    Zainuddin, Hishamuddin
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 (01): : 1 - 14
  • [29] Realization of mutually unbiased bases for a qubit with only one wave plate: theory and experiment
    Hou, Zhibo
    Xiang, Guoyong
    Dong, Daoyi
    Li, Chuan-Feng
    Guo, Guang-Can
    OPTICS EXPRESS, 2015, 23 (08): : 10018 - 10031
  • [30] Mutually unbiased bases, orthogonal Latin squares, and hidden-variable models
    Paterek, Tomasz
    Dakic, Borivoje
    Brukner, Caslav
    PHYSICAL REVIEW A, 2009, 79 (01):