Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests

被引:41
作者
Kwon, Jee Young [1 ,2 ]
Lee, Seung Young [3 ,4 ]
Koedrith, Preeyaporn [5 ]
Lee, Jong Yun [3 ]
Kim, Kyoung-Min [6 ]
Oh, Jae-Min [6 ]
Yang, Sung Ik [7 ]
Kim, Meyoung-Kon [8 ]
Lee, Jong Kwon [9 ]
Jeong, Jayoung [9 ]
Maeng, Eun Ho [3 ]
Lee, Beam Jun [4 ]
Seo, Young Rok [1 ]
机构
[1] Dongguk Univ, Inst Environm Med, Dept Life Sci, Seoul, South Korea
[2] Kyung Hee Univ, Sch Med, Dept Biomed Sci, Seoul, South Korea
[3] Korea Testing & Res Inst, Seoul, South Korea
[4] Chungbuk Natl Univ, Coll Vet Med, Cheongju, Chungcheongbuk, South Korea
[5] Mahidol Univ, Fac Environm & Resource Studies, Nakhon Pathom 73170, Thailand
[6] Yonsei Univ, Dept Chem & Med Chem, Coll Sci & Technol, Wonju, Gangwondo, South Korea
[7] Kyung Hee Univ, Dept Appl Chem, Yongin, South Korea
[8] Korea Univ, Coll Med, Dept Biochem & Mol Biol, Seoul 136705, South Korea
[9] MFDS, Toxicol Res Div, Natl Inst Food & Drug Safety Evaluat NIFDS, Chungcheongbuk Do, South Korea
关键词
Genotoxicity test; Organization for Economic Cooperation and; Development test guideline; Good laboratory practice; Zinc oxide nanoparticles; ZINC-OXIDE; OXIDATIVE STRESS; TITANIUM-DIOXIDE; GOLD NANOPARTICLES; NANOMATERIALS; CYTOTOXICITY; MUTAGENICITY; TOXICITY; DAMAGE; SIZE;
D O I
10.1016/j.mrgentox.2014.01.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The industrial application of nanotechnology, particularly using zinc oxide (ZnO), has grown rapidly, including products such as cosmetics, food, rubber, paints; and plastics. However, despite increasing population exposure to ZnO, its potential genotoxicity remains controversial. The biological effects of nanoparticles depend on their physicochemical properties. Preparations with well-defined physicochemical properties and standardized test methods are required for assessing the genotoxicity of nanoparticles. In this study, we have evaluated the genotoxicity of four kinds of ZnO nanoparticles: 20 nm and 70 nm size, positively or negatively charged. Four different genotoxicity tests (bacterial mutagenicity assay, in vitro chromosomal aberration test, in vivo comet assay, and in vivo micronucleus test, were conducted, following Organization for Economic Cooperation and Development (OECD) test guidelines with good laboratory practice (GLP) procedures. No statistically significant differences from the solvent controls were observed. These results suggest that surface-modified ZnO nanoparticles do not induce genotoxicity in in vitro or in vivo test systems. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
[21]   Evaluation of in vivo and in vitro toxicological and genotoxic potential of aluminum chloride [J].
Fernandes Paz, Leticia Nazareth ;
Moura, Lais Mesquita ;
Feio, Danielle Cristinne A. ;
Goncalves Cardoso, Mirella de Souza ;
Ximenes, Wagner Luiz O. ;
Montenegro, Raquel C. ;
Alves, Ana Paula N. ;
Burbano, Rommel R. ;
Lima, Patricia Danielle L. .
CHEMOSPHERE, 2017, 175 :130-137
[22]   Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: Size matters [J].
Kononenko, Veno ;
Repar, Neza ;
Marusic, Nika ;
Drasler, Barbara ;
Romih, Tea ;
Hocevar, Samo ;
Drobne, Damjana .
TOXICOLOGY IN VITRO, 2017, 40 :256-263
[23]   In Vitro Assessment of the Genotoxic Potential of Pristine Graphene Platelets [J].
Malkova, Andrea ;
Svadlakova, Tereza ;
Singh, Avni ;
Kolackova, Martina ;
Vankova, Radka ;
Borsky, Pavel ;
Holmannova, Drahomira ;
Karas, Adam ;
Borska, Lenka ;
Fiala, Zdenek .
NANOMATERIALS, 2021, 11 (09)
[24]   In vitro and In vivo evaluation of green-hydrothermal synthesized ZnO nanoparticles [J].
Shubha, P. ;
Gowda, M. Likhith ;
Namratha, K. ;
Manjunatha, H. B. ;
Byrappa, K. .
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2019, 49 :692-699
[25]   Potential role of mitochondrial damage and S9 mixture including metabolic enzymes in ZnO nanoparticles-induced oxidative stress and genotoxicity in Chinese hamster lung (CHL/IU) cells [J].
Yanagisawa, Hiroyuki ;
Seki, Yoshiko ;
Yogosawa, Shingo ;
Takumi, Shota ;
Shimizu, Hidesuke ;
Suka, Machi .
MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 2018, 834 :25-34
[26]   Evaluation of In Vitro Cytotoxic, Genotoxic, Apoptotic, and Cell Cycle Arrest Potential of Iron-Nickel Alloy Nanoparticles [J].
Vatan, Ozgur .
TOXICS, 2022, 10 (09)
[27]   Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers [J].
Dybowska, Agnieszka D. ;
Croteau, Marie-Noele ;
Misra, Superb K. ;
Berhanu, Deborah ;
Luoma, Samuel N. ;
Christian, Paul ;
O'Brien, Paul ;
Valsami-Jones, Eugenia .
ENVIRONMENTAL POLLUTION, 2011, 159 (01) :266-273
[28]   Lack of cytotoxic and genotoxic effects of Minthostachys verticillata essential oil: Studies in vitro and in vivo [J].
Matias Escobar, Franco ;
Noelia Cariddi, Laura ;
Carola Sabini, Maria ;
Reinoso, Elina ;
Beatriz Sutil, Sonia ;
Vanesa Torres, Cristina ;
Matilde Zanon, Silvia ;
Ines Sabini, Liliana .
FOOD AND CHEMICAL TOXICOLOGY, 2012, 50 (09) :3062-3067
[29]   In vitro and in vivo assessments of the genotoxic potential of 3-chloroallyl alcohol [J].
Redmond, Aisling ;
Zhang, Fagen ;
Cheng, WanYun ;
Gollapudi, B. Bhaskar .
ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2023, 64 (01) :26-38
[30]   Evaluation of the genotoxic potential of the isocoumarin paepalantine in in vivo and in vitro mammalian systems [J].
Tavares, DC ;
Varanda, EA ;
Andrade, FDP ;
Vilegas, W ;
Takahashi, CS .
JOURNAL OF ETHNOPHARMACOLOGY, 1999, 68 (1-3) :115-120