The common invariant subspace problem: an approach via Grobner bases

被引:13
|
作者
Arapura, D
Peterson, C [1 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
eigenvector; invariant subspace; Grassmann variety; Grobner basis; algorithm;
D O I
10.1016/j.laa.2003.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n x n matrix. It is a relatively simple process to construct a homogeneous ideal (generated by quadrics) whose associated projective variety parametrizes the one-dimensional invariant subspaces of A. Given a finite collection of n x n matrices, one can similarly construct a homogeneous ideal (again generated by quadrics) whose associated projective variety parametrizes the one-dimensional subspaces which are invariant subspaces for every member of the collection. Grobner basis techniques then provide a finite, rational algorithm to determine how many points are on this variety. In other words, a finite, rational algorithm is given to determine both the existence and quantity of common one-dimensional invariant subspaces to a set of matrices. This is then extended, for each d, to an algorithm to determine both the existence and quantity of common d-dimensional invariant subspaces to a set of matrices. (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 47 条
  • [11] Computing Grobner bases of pure binomial ideals via submodules of Zn
    Boffi, Giandomenico
    Logar, Alessandro
    JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (10) : 1297 - 1308
  • [12] Properties of entire functions over polynomial rings via Grobner bases
    Apel, J
    Stückrad, J
    Tworzewski, P
    Winiarski, T
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2003, 14 (01) : 1 - 10
  • [13] An overview of some recent developments on the Invariant Subspace Problem
    Chalendar, Isabelle
    Partington, Jonathan R.
    CONCRETE OPERATORS, 2013, 1 : 1 - 10
  • [14] Invariant Subspace Approach to Boolean (Control) Networks
    Cheng, Daizhan
    Zhang, Lijun
    Bi, Dongyao
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (04) : 2325 - 2337
  • [15] Recognizing the Semiprimitivity of N-graded Algebras via Grobner Bases
    Li, Huishi
    ALGEBRA COLLOQUIUM, 2015, 22 (03) : 459 - 468
  • [16] Faster Grobner bases for Lie derivatives of ODE systems via monomial orderings
    Bessonov, Mariya
    Ilmer, Ilia
    Konstantinova, Tatiana
    Ovchinnikov, Alexey
    Pogudin, Gleb
    Soto, Pedro
    PROCEEDINGS OF THE 2024 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2024, 2024, : 234 - 243
  • [17] Cohen-Macaulay Criteria for Projective Monomial Curves via Grobner Bases
    Herzog, Juergen
    Stamate, Dumitru I.
    ACTA MATHEMATICA VIETNAMICA, 2019, 44 (01) : 51 - 64
  • [18] AN EXPLICIT EXAMPLE CONCERNING THE INVARIANT SUBSPACE PROBLEM FOR BANACH SPACES
    Sliwa, Wieslaw
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (02) : 627 - 641
  • [19] Non-Archimedean Quasitriangular Operators and the Invariant Subspace Problem
    Azzedine El Asri
    Mohammed Babahmed
    p-Adic Numbers, Ultrametric Analysis and Applications, 2022, 14 : 325 - 334
  • [20] Non-Archimedean Quasitriangular Operators and the Invariant Subspace Problem
    El Asri, Azzedine
    Babahmed, Mohammed
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2022, 14 (04) : 325 - 334