Rate of soil-aggregate formation under different organic matter amendments-a short-term incubation experiment

被引:48
作者
Andruschkewitsch, Rouven [1 ]
Geisseler, Daniel [1 ]
Dultz, Stefan [2 ]
Joergensen, Rainer-Georg [3 ]
Ludwig, Bernard [1 ]
机构
[1] Univ Kassel, Dept Environm Chem, D-37213 Witzenhausen, Germany
[2] Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany
[3] Univ Kassel, Dept Soil Biol & Plant Nutr, D-37213 Witzenhausen, Germany
关键词
ergosterol; water-stable aggregates; microbial biomass; soil respiration; CROP RESIDUE DECOMPOSITION; WATER-STABLE AGGREGATION; MICROBIAL BIOMASS-C; MACROAGGREGATE DYNAMICS; CARBON SATURATION; NITROGEN; TILLAGE; SEQUESTRATION; STABILITY; TURNOVER;
D O I
10.1002/jpln.201200628
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
To improve soil structure and take advantage of several accompanying ecological benefits, it is necessary to understand the underlying processes of aggregate dynamics in soils. Our objective was to quantify macroaggregate (> 250 m) rebuilding in soils from loess (Haplic Luvisol) with different initial soil organic C (SOC) contents and different amendments of organic matter (OM) in a short term incubation experiment. Two soils differing in C content and sampled at 0-5 and 5-25cm soil depths were incubated after macroaggregate destruction. The following treatments were applied: (1) control (without any addition), (2) OM1 (addition of OM: preincubated wheat straw [< 10mm, C : N 40.6] at a rate of 4.1 g C [kg soil](-1)), and (3) OM2 (same as (2) at a rate of 8.2 g C [kg soil](-1)). Evolution of CO2 released from the treatments was measured continuously, and contents of different water-stable aggregate-size classes (> 250 m, 250-53 m, < 53 m), microbial biomass, and ergosterol were determined after 7 and 28 d of incubation. Highest microbial activity was observed in the first 3 d after the OM application. With one exception, > 50% of the rebuilt macroaggregates were formed within the first 7 d after rewetting and addition of OM. However, the amount of organic C within the new macroaggregates was approximate to 2- to 3-fold higher than in the original soil. The process of aggregate formation was still proceeding after 7 d of incubation, however at a lower rate. Contents of organic C within macroaggregates were decreased markedly after 28 d of incubation in the OM1 and OM2 treatments, suggesting that the microbial biomass (bacteria and fungi) used organic C within the newly built macroaggregates. Overall, the results confirmed for all treatments that macroaggregate formation is a rapid process and highly connected with the amount of OM added and microbial activity. However, the time of maximum aggregation after C addition depends on the soil and substrate investigated. Moreover, the results suggest that the primary macroaggregates, formed within the first 7 d, are still unstable and oversaturated with OM and therefore act as C source for microbial decomposition processes.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 38 条
[1]   Fate of carbon and nitrogen in water-stable aggregates during decomposition of (CN)-C-13-N-15-labelled wheat straw in situ [J].
Angers, DA ;
Recous, S ;
Aita, C .
EUROPEAN JOURNAL OF SOIL SCIENCE, 1997, 48 (02) :295-300
[2]  
[Anonymous], 2010, R LANG ENV STAT COMP
[3]   Relationship of soil organic matter dynamics to physical protection and tillage [J].
Balesdent, J ;
Chenu, C ;
Balabane, M .
SOIL & TILLAGE RESEARCH, 2000, 53 (3-4) :215-230
[4]   Decomposition of 13C and 15N labelled plant residue materials in two different soil types and its impact on soil carbon, nitrogen, aggregate stability, and aggregate formation [J].
Blair, N ;
Faulkner, RD ;
Till, AR ;
Sanchez, P .
AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2005, 43 (07) :873-886
[5]   Influence of microbial populations and residue quality on aggregate stability [J].
Bossuyt, H ;
Denef, K ;
Six, J ;
Frey, SD ;
Merckx, R ;
Paustian, K .
APPLIED SOIL ECOLOGY, 2001, 16 (03) :195-208
[6]   Physical fractionation of soil and structural and functional complexity in organic matter turnover [J].
Christensen, BT .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2001, 52 (03) :345-353
[7]   Impact of crop residue location on carbon and nitrogen distribution in soil and in water-stable aggregates [J].
Coppens, F. ;
Merckx, R. ;
Recous, S. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2006, 57 (04) :570-582
[8]   Quantifying water-stable soil aggregate turnover and its implication for soil organic matter dynamics in a model study [J].
De Gryze, S. ;
Six, J. ;
Merckx, R. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2006, 57 (05) :693-707
[9]   A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture [J].
De Gryze, S ;
Six, J ;
Brits, C ;
Merckx, R .
SOIL BIOLOGY & BIOCHEMISTRY, 2005, 37 (01) :55-66
[10]   Soil Infrastructure, Interfaces & Translocation Processes in Inner Space ('Soil-it-is'): towards a road map for the constraints and crossroads of soil architecture and biophysical processes [J].
de Jonge, L. W. ;
Moldrup, P. ;
Schjonning, P. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (08) :1485-1502