Spatio-temporal Channel Correlation Networks for Action Classification

被引:134
作者
Diba, Ali [1 ,4 ]
Fayyaz, Mohsen [2 ]
Sharma, Vivek [3 ]
Arzani, M. Mahdi [4 ]
Yousefzadeh, Rahman [4 ]
Gall, Juergen [2 ]
Van Gool, Luc [1 ,4 ]
机构
[1] Katholieke Univ Leuven, ESAT PSI, Leuven, Belgium
[2] Univ Bonn, Bonn, Germany
[3] KIT, CV HCI, Karlsruhe, Germany
[4] Sensifai, Brussels, Belgium
来源
COMPUTER VISION - ECCV 2018, PT IV | 2018年 / 11208卷
基金
欧洲研究理事会;
关键词
RECOGNITION; HISTOGRAMS;
D O I
10.1007/978-3-030-01225-0_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The work in this paper is driven by the question if spatio-temporal correlations are enough for 3D convolutional neural networks (CNN)? Most of the traditional 3D networks use local spatio-temporal features. We introduce a new block that models correlations between channels of a 3D CNN with respect to temporal and spatial features. This new block can be added as a residual unit to different parts of 3D CNNs. We name our novel block 'Spatio-Temporal Channel Correlation' (STC). By embedding this block to the current state-of-the-art architectures such as ResNext and ResNet, we improve the performance by 2-3% on the Kinetics dataset. Our experiments show that adding STC blocks to current state-of-the-art architectures outperforms the state-of-the-art methods on the HMDB51, UCF101 and Kinetics datasets. The other issue in training 3D CNNs is about training them from scratch with a huge labeled dataset to get a reasonable performance. So the knowledge learned in 2D CNNs is completely ignored. Another contribution in this work is a simple and effective technique to transfer knowledge from a pre-trained 2D CNN to a randomly initialized 3D CNN for a stable weight initialization. This allows us to significantly reduce the number of training samples for 3D CNNs. Thus, by fine-tuning this network, we beat the performance of generic and recent methods in 3D CNNs, which were trained on large video datasets, e.g. Sports-1M, and fine-tuned on the target datasets, e.g. HMDB51/UCF101.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 43 条
[1]  
[Anonymous], 2017, ABS170805038 CORR
[2]  
[Anonymous], 2007, ACM MM
[3]  
[Anonymous], 2017, CoRR
[4]  
[Anonymous], 2016, arXiv
[5]  
[Anonymous], 2017, ICCV
[6]  
[Anonymous], 2016, ARXIV160800182
[7]  
[Anonymous], 2015, arXiv: Learning
[8]  
[Anonymous], 2016, ECCV WORKSH
[9]  
[Anonymous], 2008, BMVC 2008 19 BRIT MA
[10]  
[Anonymous], 2017, ARXIV PREPRINT ARXIV