Magnetic Resonance Imaging Assessment of Macrophage Accumulation in Mouse Brain after Experimental Traumatic Brain Injury

被引:36
|
作者
Foley, Lesley M. [3 ]
Hitchens, T. Kevin [2 ,3 ]
Ho, Chien [2 ,3 ]
Janesko-Feldman, Keri L. [1 ]
Melick, John A. [1 ]
Bayir, Hulya [1 ,4 ,5 ]
Kochanek, Patrick M. [1 ,4 ,5 ,6 ]
机构
[1] Univ Pittsburgh, Sch Med, Safar Ctr Resuscitat Res, Pittsburgh, PA 15260 USA
[2] Carnegie Mellon Univ, Dept Biol Sci, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Pittsburgh NMR Ctr Biomed Res, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Sch Med, Dept Crit Care Med, Pittsburgh, PA 15260 USA
[5] Univ Pittsburgh, Sch Med, Dept Pediat, Pittsburgh, PA 15260 USA
[6] Univ Pittsburgh, Sch Med, Dept Anesthesiol, Pittsburgh, PA 15260 USA
基金
美国国家卫生研究院;
关键词
head trauma; inflammation; MRI; CONTROLLED CORTICAL IMPACT; IRON-OXIDE; INFLAMMATORY RESPONSE; DEFICIENT MICE; STEM-CELLS; BLOOD-FLOW; MICROGLIA; RATS; PARTICLES; INFILTRATION;
D O I
10.1089/neu.2008.0747
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Macrophages contribute to secondary damage and repair after central nervous system (CNS) injury. Micronsized paramagnetic iron oxide (MPIO) particles can label macrophages in situ, facilitating three-dimensional (3D) mapping of macrophage accumulation following traumatic brain injury (TBI), via ex vivo magnetic resonance microscopy (MRM) and in vivo monitoring with magnetic resonance imaging (MRI). MPIO particles were injected intravenously (iv; 4.5mg Fe/Kg) in male C57BL/6J mice (n = 21). A controlled cortical impact (CCI) was delivered to the left parietal cortex. Five protocols were used in naive and injured mice to assess feasibility, specificity, and optimal labeling time. In vivo imaging was carried out at 4.7 Tesla (T). Brains were then excised for 3D MRM at 11.7 T. Triple-label immunofluorescence (MPIO via Dragon Green, macrophages via F480, and nuclei via 4,6-diamidino-2-phenylindole [DAPI]) of brain sections confirmed MPIO particles within macrophages. MRM of naives showed an even distribution of a small number of MPIO-labeled macrophages in the brain. MRM at 48-72 h after CCI and MPIO injection revealed MPIO-labeled macrophages accumulated in the trauma region. When MPIO particles were injected 6 days before CCI, MRM 48 h after CCI also revealed labeled cells at the injury site. In vivo studies of macrophage accumulation by MRI suggest that this approach is feasible, but requires additional optimization. We conclude that MPIO labeling and ex vivo MRM mapping of macrophage accumulation for assessment of TBI is readily accomplished. This new technique could serve as an adjunct to conventional MR approaches by defining inflammatory mechanisms and therapeutic efficacy of anti-inflammatory agents in experimental TBI.
引用
收藏
页码:1509 / 1519
页数:11
相关论文
共 50 条
  • [21] A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury
    Shenton, M. E.
    Hamoda, H. M.
    Schneiderman, J. S.
    Bouix, S.
    Pasternak, O.
    Rathi, Y.
    Vu, M. -A.
    Purohit, M. P.
    Helmer, K.
    Koerte, I.
    Lin, A. P.
    Westin, C. -F.
    Kikinis, R.
    Kubicki, M.
    Stern, R. A.
    Zafonte, R.
    BRAIN IMAGING AND BEHAVIOR, 2012, 6 (02) : 137 - 192
  • [22] Magnetic resonance imaging of human brain macrophage infiltration
    Klaus G. Petry
    Claudine Boiziau
    Vincent Dousset
    Bruno Brochet
    Neurotherapeutics, 2007, 4 : 434 - 442
  • [23] TRAUMATIC BRAIN INJURY INDUCES MACROPHAGE SUBSETS IN THE BRAIN
    Hsieh, Christine L.
    Kim, Charles
    Ryba, Bryan
    Niemi, Erene
    Bando, Jennifer
    Locksley, Richard
    Liu, Jialing
    Nakamura, Mary
    Seaman, William
    JOURNAL OF NEUROTRAUMA, 2013, 30 (15) : A34 - A34
  • [24] BRAIN PATHOLOGY AFTER MILD TRAUMATIC BRAIN INJURY: AN EXPLORATORY STUDY BY REPEATED MAGNETIC RESONANCE EXAMINATION
    Lannsjo, Marianne
    Raininko, Raili
    Bustamante, Mariana
    von Seth, Charlotta
    Borg, Jorgen
    JOURNAL OF REHABILITATION MEDICINE, 2013, 45 (08) : 721 - 728
  • [25] Interpretation of magnetic resonance imaging in the chronic phase of traumatic brain injury: What is missed in the original reports?
    Laalo, Jussi P.
    Kurki, Timo J.
    Tenovuo, Olli S.
    BRAIN INJURY, 2014, 28 (01) : 66 - 70
  • [26] Predicting Outcome after Pediatric Traumatic Brain Injury by Early Magnetic Resonance Imaging Lesion Location and Volume
    Smitherman, Emily
    Hernandez, Ana
    Stavinoha, Peter L.
    Huang, Rong
    Kernie, Steven G.
    Diaz-Arrastia, Ramon
    Miles, Darryl K.
    JOURNAL OF NEUROTRAUMA, 2016, 33 (01) : 35 - 48
  • [27] Traumatic brain injury induces macrophage subsets in the brain
    Hsieh, Christine L.
    Kim, Charles C.
    Ryba, Bryan E.
    Niemi, Erene C.
    Bando, Jennifer K.
    Locksley, Richard M.
    Liu, Jialing
    Nakamura, Mary C.
    Seaman, William E.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2013, 43 (08) : 2010 - 2022
  • [28] Conventional and diffusion magnetic resonance imaging in the acute phase of severe traumatic brain injury
    Pasco-Papon, A
    Darabi, D
    Mas-Caradec, MC
    Tanguy, JY
    Marc, G
    Ter Minassian, A
    Beydon, L
    Caron, C
    Lejeune, JJ
    ANNALES FRANCAISES D ANESTHESIE ET DE REANIMATION, 2005, 24 (05): : 510 - 515
  • [29] THE MACROPHAGE RESPONSE AFTER FOCAL TRAUMATIC BRAIN INJURY IN THE RAT
    Turtzo, L. Christine
    Janes, Lindsay
    Gold, Eric
    Budde, Matthew
    Coppola, Tiziana
    Dean, Dana
    Lescher, Jacob
    Frank, Joseph
    JOURNAL OF NEUROTRAUMA, 2012, 29 (10) : A49 - A49
  • [30] Experimental models of traumatic brain injury
    Prieto, R.
    Gutierrez-Gonzalez, R.
    Pascual, J. M.
    Roda, J. M.
    Cerdan, S.
    Matias-Guiu, J.
    Barcia, J. A.
    NEUROCIRUGIA, 2009, 20 (03): : 225 - 244