An O(n log n) Approximation Scheme for Steiner Tree in Planar Graphs

被引:54
作者
Borradaile, Glencora [1 ]
Klein, Philip [1 ]
Mathieu, Claire [1 ]
机构
[1] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
关键词
Steiner tree; planar graphs; approximation scheme; ALGORITHMS;
D O I
10.1145/1541885.1541892
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a Polynomial-Time Approximation Scheme (PTAS) for the Steiner tree problem in planar graphs. The running time is O(n log n).
引用
收藏
页数:31
相关论文
共 39 条
[1]   Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems [J].
Arora, S .
JOURNAL OF THE ACM, 1998, 45 (05) :753-782
[2]  
Arora S, 1998, SODA, P33
[3]   APPROXIMATION ALGORITHMS FOR NP-COMPLETE PROBLEMS ON PLANAR GRAPHS [J].
BAKER, BS .
JOURNAL OF THE ACM, 1994, 41 (01) :153-180
[4]   IMPROVED APPROXIMATIONS FOR THE STEINER TREE PROBLEM [J].
BERMAN, P ;
RAMAIYER, V .
JOURNAL OF ALGORITHMS, 1994, 17 (03) :381-408
[5]   THE STEINER PROBLEM WITH EDGE LENGTH-1 AND LENGTH-2 [J].
BERN, M ;
PLASSMANN, P .
INFORMATION PROCESSING LETTERS, 1989, 32 (04) :171-176
[6]   FASTER EXACT ALGORITHMS FOR STEINER TREES IN PLANAR NETWORKS [J].
BERN, M .
NETWORKS, 1990, 20 (01) :109-120
[7]  
BERN M, 1991, MATH OPER RES, V33, P405
[8]  
BORRADAILE G, 2008, P 35 INT C AUT LANG
[9]  
Borradaile G, 2007, LECT NOTES COMPUT SC, V4619, P275
[10]  
Borradaile G, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1285