Dynamic Performance Evaluation of an Integrated 15 MW Floating Offshore Wind Turbine Under Typhoon and ECD Conditions

被引:10
|
作者
Liu, Shiqi [1 ]
Chuang, Zhenju [1 ]
Qu, Yan [2 ]
Li, Xin [3 ]
Li, Chunzheng [1 ]
He, Zhen [1 ]
机构
[1] Dalian Maritime Univ, Naval Architecture & Ocean Engn Coll, Dalian, Peoples R China
[2] South China Univ Technol, Sch Marine Sci & Engn, Shenzhen, Peoples R China
[3] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian, Peoples R China
关键词
floating offshore wind turbine; dynamic performance; 15 MW FOWT; typhoon sea state; ECD wind condition; second-order wave load; WAVE ENERGY CONVERTER; PLATFORM; RESPONSES; LOADS;
D O I
10.3389/fenrg.2022.874438
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Technology innovation has led to an increase in floating wind turbine size aimed at releasing the pressure on capital cost and increasing its capacity factor. Large-size turbines pose high challenges regarding design with essential structure reliability. The dynamic performance of an integrated 15-megawatt (MW) wind turbine under extreme sea loads is investigated in this paper. Platform motions, mooring system positioning forces, sizeable blades, and tower behaviors are all studied under the targeted typhoon condition and extreme coherent gust with direction change (ECD) wind condition. Potential flow theory is used to analyze the first-order wave load, mean-drift wave load, and second-order difference-frequency wave load on the substructure of the ultra-large 15 MW floating offshore wind turbine (FOWT). The blade element momentum (BEM) theory is adopted for the calculation of the aerodynamic loads on the floating wind turbine, and the finite element method (FEM) is applied to analyze the mooring lines of the floating wind turbine. The results show that the effect of quadratic transfer function (QTF) will significantly increase the dynamic response of FOWT under the typhoon sea state. The ECD wind condition has an influential impact on the motion responses, the axial force of the mooring lines, and structural responses under the normal operating state.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Integrated Dynamics Response Analysis for IEA 10-MW Spar Floating Offshore Wind Turbine
    Guo, Xiaojiang
    Zhang, Yu
    Yan, Jiatao
    Zhou, Yiming
    Yan, Shu
    Shi, Wei
    Li, Xin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (04)
  • [22] Structural integrity of a 2.5-MW spar-type floating offshore wind turbine under extreme environmental conditions
    Kim, Hanjong
    Lee, Jaehoon
    Han, Changwan
    Park, Seonghun
    WIND AND STRUCTURES, 2023, 37 (06) : 461 - 471
  • [23] A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions
    Wen, Binrong
    Tian, Xinliang
    Dong, Xingjian
    Peng, Zhike
    Zhang, Wenming
    Wei, Kexiang
    ENERGY, 2019, 168 : 1138 - 1156
  • [24] Effects of Fish Nets on the Nonlinear Dynamic Performance of a Floating Offshore Wind Turbine Integrated with a Steel Fish Farming Cage
    Lei, Y.
    Zhao, S. X.
    Zheng, X. Y.
    Li, W.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2020, 20 (03)
  • [25] Analysis of Dynamic Behavior of Floating Offshore Wind Turbine System
    Jang, Jin Seok
    Sohn, Jeong Hyun
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2011, 35 (01) : 77 - 83
  • [26] Effects of turbulent wind and irregular waves on the dynamic characteristics of a floating offshore wind turbine platform
    Tian, Yinong
    Zhong, Yuguang
    Liu, Hengxu
    Kong, Fankai
    Chen, Hailong
    Ma, Zhijun
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (06) : 2921 - 2931
  • [27] Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion
    Fang, Yuan
    Duan, Lei
    Han, Zhaolong
    Zhao, Yongsheng
    Yang, He
    ENERGY, 2020, 192
  • [28] Site-specific optimizations of a 10 MW floating offshore wind turbine for the Mediterranean Sea
    Ferri, Giulio
    Marino, Enzo
    RENEWABLE ENERGY, 2023, 202 : 921 - 941
  • [29] Study on Aerodynamic Performance and Wake Characteristics of a Floating Offshore Wind Turbine in Wind-Wave Coupling Field
    Liang, Xiaoling
    Li, Zheng
    Han, Xingxing
    Fu, Shifeng
    Zhu, Weijun
    Pu, Tianmei
    Sun, Zhenye
    Yang, Hua
    Shen, Wenzhong
    SUSTAINABILITY, 2024, 16 (13)
  • [30] Motion Performance and Mooring System of a Floating Offshore Wind Turbine
    Zhao, Jing
    Zhang, Liang
    Wu, Haitao
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2012, 11 (03) : 328 - 334