A new characterization of Gromov hyperbolicity for negatively curved surfaces

被引:21
作者
Rodriguez, Jose M. [1 ]
Touris, Eva [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
关键词
Gromov hyperbolicity; hyperbolic Riemann surface; closed geodesic;
D O I
10.5565/PUBLMAT_50206_01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that to check Gromov hyperbolicity of any surface of constant negative curvature, or, Riemann surface, we only need to verify the Rips condition on a very small class of triangles, namely, those obtained by marking three points in a simple closed geodesic. This result is, in fact, a new characterization of Gromov hyperbolicity for Riemann surfaces.
引用
收藏
页码:249 / 278
页数:30
相关论文
共 50 条
[41]   Gromov hyperbolicity of periodic planar graphs [J].
Canton, Alicia ;
Granados, Ana ;
Pestana, Domingo ;
Manuel Rodriguez, Jose .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (01) :79-90
[42]   Gromov hyperbolicity through decomposition of metric spaces [J].
Rodríguez, JM ;
Tourís, E .
ACTA MATHEMATICA HUNGARICA, 2004, 103 (1-2) :107-138
[43]   Gromov hyperbolicity through decomposition of metric spaces [J].
José M. Rodríguez ;
Eva Tourís .
Acta Mathematica Hungarica, 2004, 103 :107-138
[44]   The Nikolov-Andreev Metric and Gromov Hyperbolicity [J].
Luo, Qianghua ;
Rasila, Antti ;
Wang, Ye ;
Zhou, Qingshan .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
[45]   Gromov (non-)hyperbolicity of certain domains in Cn [J].
Nikolov, Nikolai ;
Thomas, Pascal J. ;
Trybula, Maria .
FORUM MATHEMATICUM, 2016, 28 (04) :783-794
[46]   Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains [J].
Balogh, ZM ;
Bonk, M .
COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) :504-533
[47]   Applying clique-decomposition for computing Gromov hyperbolicity [J].
Cohen, Nathann ;
Coudert, David ;
Ducoffe, Guillaume ;
Lancin, Aurelien .
THEORETICAL COMPUTER SCIENCE, 2017, 690 :114-139
[48]   Gromov hyperbolicity of Denjoy domains through fundamental domains [J].
Hasto, Peter ;
Portilla, Ana ;
Rodriguez, Jose M. ;
Touris, Eva .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (3-4) :295-310
[49]   Gromov hyperbolicity through decomposition of metrics spaces II [J].
Ana Portilla ;
José M. Rodríguez ;
Eva Tourís .
The Journal of Geometric Analysis, 2004, 14 :123-149
[50]   GROMOV HYPERBOLICITY OF STRONGLY PSEUDOCONVEX ALMOST COMPLEX MANIFOLDS [J].
Bertrand, Florian ;
Gaussier, Herve .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) :3901-3913