A new characterization of Gromov hyperbolicity for negatively curved surfaces

被引:21
|
作者
Rodriguez, Jose M. [1 ]
Touris, Eva [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
关键词
Gromov hyperbolicity; hyperbolic Riemann surface; closed geodesic;
D O I
10.5565/PUBLMAT_50206_01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that to check Gromov hyperbolicity of any surface of constant negative curvature, or, Riemann surface, we only need to verify the Rips condition on a very small class of triangles, namely, those obtained by marking three points in a simple closed geodesic. This result is, in fact, a new characterization of Gromov hyperbolicity for Riemann surfaces.
引用
收藏
页码:249 / 278
页数:30
相关论文
共 50 条
  • [1] Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces
    Touris, Eva
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 865 - 881
  • [2] Gromov Hyperbolicity of Riemann Surfaces
    José M.RODRíGUEZ
    EVa TOURIS
    Acta Mathematica Sinica(English Series), 2007, 23 (02) : 209 - 228
  • [3] Gromov Hyperbolicity of Riemann Surfaces
    José M. Rodríguez
    Eva Tourís
    Acta Mathematica Sinica, English Series, 2007, 23 : 209 - 228
  • [4] Gromov hyperbolicity of Riemann surfaces
    Rodriguez, Jose M.
    Touris, Eva
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (02) : 209 - 228
  • [5] A CHARACTERIZATION OF GROMOV HYPERBOLICITY OF SURFACES WITH VARIABLE NEGATIVE CURVATURE
    Portilla, Ana
    Touris, Eva
    PUBLICACIONS MATEMATIQUES, 2009, 53 (01) : 83 - 110
  • [6] Twists and Gromov Hyperbolicity of Riemann Surfaces
    Matsuzaki, Katsuhiko
    Rodriguez, Jose M.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (01) : 29 - 44
  • [7] Twists and Gromov hyperbolicity of riemann surfaces
    Katsuhiko Matsuzaki
    José M. Rodríguez
    Acta Mathematica Sinica, English Series, 2011, 27 : 29 - 44
  • [8] The topology of balls in Riemannian surfaces and Gromov hyperbolicity
    Jesús Gonzalo
    Ana Portilla
    José M. Rodríguez
    Eva Tourís
    Mathematische Zeitschrift, 2013, 275 : 741 - 760
  • [9] The topology of balls in Riemannian surfaces and Gromov hyperbolicity
    Gonzalo, Jesus
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (3-4) : 741 - 760
  • [10] The topology of balls and Gromov hyperbolicity of Riemann surfaces
    Portilla, A
    Rodríguez, JM
    Tourís, E
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 21 (03) : 317 - 335