One-dimensional delocalizing transitions of matter waves in optical lattices

被引:12
作者
Cruz, H. A. [1 ,2 ]
Brazhnyi, V. A. [1 ]
Konotop, V. V. [1 ,2 ]
Salerno, M. [3 ,4 ]
机构
[1] Univ Lisbon, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
[2] Univ Lisbon, Dept Fis, Fac Ciencias, P-1749016 Lisbon, Portugal
[3] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, SA, Italy
[4] Univ Salerno, Consorzio Nazl Interuniv Sci Fis Mat CNISM, I-84081 Baronissi, SA, Italy
关键词
Nonlinear dynamics; Gap-solitons; Localized modes; Bose-Einstein condensates; Bose-Bose mixtures; NONLINEAR SCHRODINGER-EQUATION; INTRINSIC LOCALIZED MODES; DYNAMICS;
D O I
10.1016/j.physd.2008.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate, both analytically and numerically, the conditions for the occurrence of the delocalizing transition phenomenon of one-dimensional localized modes of several nonlinear continuous periodic and discrete systems of the nonlinear Schrodinger type. We show that either non-existence of solitons in the small amplitude limit or the loss of stability along existence branches can lead to delocalizing transitions, which occur following different scenarios. Examples of delocalizing transitions of both types are provided for a class of equations which describe single component and binary mixtures of Bose-Einstein condensates trapped in linear and nonlinear optical lattices. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1372 / 1387
页数:16
相关论文
共 40 条
[1]   Localized modes of binary mixtures of Bose-Einstein condensates in nonlinear optical lattices [J].
Abdullaev, F. Kh. ;
Gammal, A. ;
Salerno, M. ;
Tomio, Lauro .
PHYSICAL REVIEW A, 2008, 77 (02)
[2]   Gap-Townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in optical lattices [J].
Abdullaev, FK ;
Salerno, M .
PHYSICAL REVIEW A, 2005, 72 (03)
[3]   Intrinsic localized modes in arrays of atomic-molecular Bose-Einstein condensates [J].
Abdullaev, FK ;
Konotop, VV .
PHYSICAL REVIEW A, 2003, 68 (01) :5
[4]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[5]   Stationary localized modes of the quintic nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, G. L. ;
Konotop, V. V. ;
Pacciani, P. .
PHYSICAL REVIEW A, 2007, 75 (02)
[6]   On classification of intrinsic localized modes for the discrete nonlinear Schrodinger equation [J].
Alfimov, GL ;
Brazhnyi, VA ;
Konotop, VV .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) :127-150
[7]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[8]   Matter solitons in Bose-Einstein condensates with optical lattices [J].
Alfimov, GL ;
Konotop, VV ;
Salerno, M .
EUROPHYSICS LETTERS, 2002, 58 (01) :7-13
[9]   Delocalizing transition of multidimensional solitons in Bose-Einstein condensates [J].
Baizakov, BB ;
Salerno, M .
PHYSICAL REVIEW A, 2004, 69 (01) :13
[10]   Delocalizing transition in one-dimensional condensates in optical lattices due to inhomogeneous interactions [J].
Bludov, Yu. V. ;
Brazhnyi, V. A. ;
Konotop, V. V. .
PHYSICAL REVIEW A, 2007, 76 (02)