Beating the Fundamental Rate-Distance Limit in a Proof-of-Principle Quantum Key Distribution System

被引:216
作者
Wang, Shuang [1 ,2 ,3 ]
He, De-Yong [1 ,2 ,3 ]
Yin, Zhen-Qiang [1 ,2 ,3 ]
Lu, Feng-Yu [1 ,2 ,3 ]
Cui, Chao-Han [1 ,2 ,3 ]
Chen, Wei [1 ,2 ,3 ]
Zhou, Zheng [1 ,2 ,3 ]
Guo, Guang-Can [1 ,2 ,3 ]
Han, Zheng-Fu [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Anhui, Peoples R China
[3] State Key Lab Cryptol, POB 5159, Beijing 100878, Peoples R China
基金
中国国家自然科学基金;
关键词
ATOMIC ENSEMBLES; REPEATERS; SECURE;
D O I
10.1103/PhysRevX.9.021046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the help of quantum key distribution (QKD), two distant peers are able to share information-theoretical secure key bits. Increasing the key rate is ultimately significant for the applications of QKD in the lossy channel. However, it has been proven that there is a fundamental rate-distance limit, called the linear bound, which restricts the performance of all existing repeaterless protocols and realizations. Surprisingly, a recently proposed protocol, called twin-field (TF) QKD, can beat the linear bound with no need for quantum repeaters. Here, we present one of the first implementations of the TF-QKD protocol and demonstrate its advantage of beating the linear bound at a channel distance of 300 km. In our experiment, a modified TF-QKD protocol that does not assume phase postselection is considered, and thus a higher key rate than the original one is expected. After controlling the phase evolution of the twin fields traveling through hundreds of kilometers of optical fibers, the implemented system achieves high-visibility single-photon interference and allows stable and high-rate measurement-device-independent QKD. Our experimental demonstration and results confirm the feasibility of the TF-QKD protocol and its prominent superiority in long-distance key distribution services.
引用
收藏
页数:9
相关论文
共 35 条
[1]  
Bennett C. H., 1984, Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, P175, DOI [10.1016/j.tcs.2011.08.039, DOI 10.1016/J.TCS.2014.05.025]
[2]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[3]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[4]   Discrete-phase-randomized coherent state source and its application in quantum key distribution [J].
Cao, Zhu ;
Zhang, Zhen ;
Lo, Hoi-Kwong ;
Ma, Xiongfeng .
NEW JOURNAL OF PHYSICS, 2015, 17
[5]   Twin-Field Quantum Key Distribution without Phase Postselection [J].
Cui, Chaohan ;
Yin, Zhen-Qiang ;
Wang, Rong ;
Chen, Wei ;
Wang, Shuang ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)
[6]  
Curty M., ARXIV180707667
[7]   Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate [J].
Dixon, A. R. ;
Yuan, Z. L. ;
Dynes, J. F. ;
Sharpe, A. W. ;
Shields, A. J. .
OPTICS EXPRESS, 2008, 16 (23) :18790-18797
[8]   High speed prototype quantum key distribution system and long term field trial [J].
Dixon, A. R. ;
Dynes, J. F. ;
Lucamarini, M. ;
Froehlich, B. ;
Sharpe, A. W. ;
Plews, A. ;
Tam, S. ;
Yuan, Z. L. ;
Tanizawa, Y. ;
Sato, H. ;
Kawamura, S. ;
Fujiwara, M. ;
Sasaki, M. ;
Shields, A. J. .
OPTICS EXPRESS, 2015, 23 (06) :7583-7592
[9]   Long-distance quantum communication with atomic ensembles and linear optics [J].
Duan, LM ;
Lukin, MD ;
Cirac, JI ;
Zoller, P .
NATURE, 2001, 414 (6862) :413-418
[10]  
Grasselli F., ARXIV190210034