Quantum quasi-shuffle algebras II

被引:2
作者
Jian, Run-Qiang [1 ]
机构
[1] Dongguan Univ Technol, Dept Math, 1 Daxue Rd, Songshan Lake 523808, Dongguan, Peoples R China
基金
中国国家自然科学基金;
关键词
Braided algebra; Quantum quasi-shuffle algebra; Mixable shuffle; Rota-Baxter algebra; Multiple q-zeta value; HOPF-ALGEBRAS; BAXTER ALGEBRAS; ZETA VALUES; PRODUCTS;
D O I
10.1016/j.jalgebra.2016.10.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the concept of mixable shuffles, we formulate explicitly the quantum quasi-shuffle product, as well as the subalgebra generated by primitive elements of the quantum quasi-shuffle bialgebra. We construct a braided coalgebra which is dual to the quantum quasi-shuffle algebra. We provide representations of quantum quasi-shuffle algebras on commutative braided Rota Baxter algebras. As an application, we establish formal power series whose terms come from a special representation of the quasi-shuffle algebra on polynomial algebra and whose evaluations at 1 are the multiple q-zeta values. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:480 / 506
页数:27
相关论文
共 32 条
[2]   Multiple q-zeta values [J].
Bradley, DM .
JOURNAL OF ALGEBRA, 2005, 283 (02) :752-798
[3]   Quantum symmetric algebras II [J].
De Chela, DF ;
Green, JA .
JOURNAL OF ALGEBRA, 2003, 269 (02) :610-631
[4]  
Drinfeld V. G., 1986, P INT C MATHEMATICIA, P798
[5]   Mixable shuffles, quasi-shuffles and Hopf algebras [J].
Ebrahimi-Fard, Kurusch ;
Guo, Li .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 24 (01) :83-101
[6]  
Fang X., ARXIV12103096
[7]   Generalized Virtual Braid Groups, Quasi-Shuffle Product and Quantum Groups [J].
Fang, Xin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (06) :1717-1731
[8]   Cofree Hopf algebras on Hopf bimodule algebras [J].
Fang, Xin ;
Jian, Run-Qiang .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (09) :3913-3930
[9]   Properties of free Baxter algebras [J].
Guo, L .
ADVANCES IN MATHEMATICS, 2000, 151 (02) :346-374
[10]   Baxter algebras and shuffle products [J].
Guo, L ;
Keigher, W .
ADVANCES IN MATHEMATICS, 2000, 150 (01) :117-149