Fractional reaction-diffusion

被引:268
作者
Henry, BI [1 ]
Wearne, SL [1 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sch Math, Sydney, NSW 2052, Australia
关键词
D O I
10.1016/S0378-4371(99)00469-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a fractional reaction-diffusion equation from a continuous-time random walk model with temporal memory and sources. The equation provides a general model for reaction-diffusion phenomena with anomalous diffusion such as occurs in spatially inhomogeneous environments. As a first investigation of this equation ae consider the special case of single species fractional reaction-diffusion in one dimension and show that the fractional diffusion does not by itself precipitate a Turing instability. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:448 / 455
页数:8
相关论文
共 19 条
  • [1] Caputo M., 1969, Elasticitae dissipazione
  • [2] Feller W., 1966, INTRO PROBABILITY TH, V2
  • [3] FRACTIONAL DIFFUSION EQUATION FOR TRANSPORT PHENOMENA IN RANDOM-MEDIA
    GIONA, M
    ROMAN, HE
    [J]. PHYSICA A, 1992, 185 (1-4): : 87 - 97
  • [4] DIFFUSION IN DISORDERED MEDIA
    HAVLIN, S
    BENAVRAHAM, D
    [J]. ADVANCES IN PHYSICS, 1987, 36 (06) : 695 - 798
  • [5] HUGHES BD, 1995, RANDOM WALKS RANDOM, pCH5
  • [6] KENKRE VM, 1973, J STAT PHYS, V9, P1
  • [7] DERIVATION OF THE CONTINUOUS-TIME RANDOM-WALK EQUATION
    KLAFTER, J
    SILBEY, R
    [J]. PHYSICAL REVIEW LETTERS, 1980, 44 (02) : 55 - 58
  • [8] STOCHASTIC PATHWAY TO ANOMALOUS DIFFUSION
    KLAFTER, J
    BLUMEN, A
    SHLESINGER, MF
    [J]. PHYSICAL REVIEW A, 1987, 35 (07) : 3081 - 3085
  • [9] KLAFTER K, 1997, PHYSICS COMPLEX SYST, P85
  • [10] Fractional diffusion: Exact representations of spectral functions
    Metzler, R
    Nonnenmacher, TF
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04): : 1089 - 1093