The Exponentially Convergent Trapezoidal Rule

被引:370
作者
Trefethen, Lloyd N. [1 ]
Weideman, J. A. C. [2 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX2 6GG, England
[2] Univ Stellenbosch, Dept Math Sci, ZA-7602 Matieland, South Africa
基金
欧洲研究理事会;
关键词
trapezoidal rule; aliasing; quadrature; resolvent; Hankel contour; double exponential quadrature; FFT; Euler Maclaurin formula; CLENSHAW-CURTIS QUADRATURE; NUMERICAL INVERSION; TIME DISCRETIZATION; LAPLACE TRANSFORMATION; DIFFERENTIAL-EQUATIONS; PERIODIC-FUNCTIONS; SOLVING EVOLUTION; MATRIX FUNCTIONS; FOURIER METHODS; GAUSS-LEGENDRE;
D O I
10.1137/130932132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the trapezoidal rule converges geometrically when applied to analytic functions on periodic intervals or the real line. The mathematics and history of this phenomenon are reviewed, and it is shown that far from being a curiosity, it is linked with computational methods all across scientific computing, including algorithms related to inverse Laplace transforms, special functions, complex analysis, rational approximation, integral equations, and the computation of functions and eigenvalues of matrices and operators.
引用
收藏
页码:385 / 458
页数:74
相关论文
共 187 条
[1]  
Adcock B., 2013, ARXIV13052643
[2]  
Ahlfors L V., 1978, COMPLEX ANAL
[3]  
Aitken A. C., 1939, STAT MATH
[4]   Computing Fresnel integrals via modified trapezium rules [J].
Alazah, Mohammad ;
Chandler-Wilde, Simon N. ;
La Porte, Scott .
NUMERISCHE MATHEMATIK, 2014, 128 (04) :635-661
[5]   Nonuniform sampling and reconstruction in shift-invariant spaces [J].
Aldroubi, A ;
Gröchenig, K .
SIAM REVIEW, 2001, 43 (04) :585-620
[6]   NUMERICAL COMPUTATION OF TRICOMI PSI FUNCTION BY THE TRAPEZOIDAL RULE [J].
ALLASIA, G ;
BESENGHI, R .
COMPUTING, 1987, 39 (03) :271-279
[7]  
ALLASIA G, 1987, NUMER MATH, V50, P419, DOI 10.1007/BF01396662
[8]  
Allasia G., 1989, NUMERICAL APPL MAT 2, P467
[10]  
[Anonymous], 2011, Quadrature Theory