Orbits of mutually unbiased bases

被引:8
作者
Blanchfield, Kate [1 ]
机构
[1] Stockholms Univ, SE-10691 Stockholm, Sweden
关键词
mutually unbiased bases; Weyl-Heisenberg group; Clifford group;
D O I
10.1088/1751-8113/47/13/135303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We express Alltop's construction ofmutually unbiased bases as orbits under the Weyl-Heisenberg group in prime dimensions and find a related construction in dimensions 2 and 4. We reproduce Alltop's mutually unbiased bases using abelian subgroups of the Clifford group in prime dimensions, in direct analogy to the well-known construction of mutually unbiased bases using abelian subgroups of the Weyl-Heisenberg group. Finally, we prove three theorems relating to the distances and linear dependencies among different sets of mutually unbiased bases.
引用
收藏
页数:15
相关论文
共 46 条
[1]   Improving Quantum State Estimation with Mutually Unbiased Bases [J].
Adamson, R. B. A. ;
Steinberg, A. M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[2]   COMPLEX SEQUENCES WITH LOW PERIODIC CORRELATIONS [J].
ALLTOP, WO .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (03) :350-354
[3]  
Apostol T.M., 1976, INTRO ANAL NUMBER TH
[4]   Symmetric informationally complete-positive operator valued measures and the extended Clifford group [J].
Appleby, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[5]  
APPLEBY DM, 2009, ARXIV09095233QUANTPH
[6]   A new proof for the existence of mutually unbiased bases [J].
Bandyopadhyay, S ;
Boykin, PO ;
Roychowdhury, V ;
Vatan, F .
ALGORITHMICA, 2002, 34 (04) :512-528
[7]  
Barnum H., 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252), DOI 10.1109/ISIT.2001.936140
[8]   Quantum cryptography with 3-state systems [J].
Bechmann-Pasquinucci, H ;
Peres, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (15) :3313-3316
[9]   Mutually unbiased bases and Hadamard matrices of order six [J].
Bengtsson, Ingemar ;
Bruzda, Wojciech ;
Ericsson, Asa ;
Larsson, Jan-Ake ;
Tadej, Wojciech ;
Zyczkowski, Karol .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
[10]   From SICs and MUBs to Eddington [J].
Bengtsson, Ingemar .
QUANTUM GROUPS, QUANTUM FOUNDATIONS, AND QUANTUM INFORMATION: A FESTSCHRIFT FOR TONY SUDBERY, 2010, 254