Soft magnetic properties of Fe-based metallic glasses (MGs) are dependent on their nanocrystallization behavior, particularly the precipitation of alpha-Fe embedded in the amorphous matrix. In this study, the effects of metalloid elements of C, B, Si, and P on thermal stability, nanocrystallization behavior, and soft magnetic properties of typical Fe-based amorphous alloys, i.e., the Fe-Cu-(CBSiP) glassy alloys, were investigated systematically. It is found that the addition of the metalloid elements can effectively retard the precipitation process of alpha-Fe during reheating of the Fe-based MGs due to the long-range diffusion of the metalloids; however, their individual effects on the compositional portioning and formation of other crystalline phases are varied. To achieve desirable soft magnetic properties, a species of metalloids and their concentrations have to be carefully controlled so that the formation of alpha-Fe does not interfere with that of other crystalline phases, especially those hard-magnetic phases.