The Edge-Wiener Index of Benzenoid Systems in Linear Time

被引:0
作者
Kelenc, Aleksander [1 ]
Klavzar, Sandi [1 ,2 ,3 ]
Tratnik, Niko [1 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
TOPOLOGICAL INDEXES; GRAPHS; NUMBER; EQUIVALENCE; VERSION;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The edge-Wiener index of a graph G is defined as the Wiener index of the line graph of G. In this paper an algorithm is developed that, for a given benzenoid system G with m edges, computes the edge-Wiener index of G in O(m) time. The key to the algorithm is a reduction of the problem to three different weighted trees. In addition to the previously used weighted vertex- and edge-Wiener indices, the so-called weighted vertex-edge-Wiener index is introduced and essentially used in the algorithm.
引用
收藏
页码:521 / 532
页数:12
相关论文
共 34 条
[1]  
Alizadeh Y, 2014, GLAS MAT, V49, P1
[2]  
Azari M, 2013, MATCH-COMMUN MATH CO, V69, P69
[3]  
Azari M, 2012, UTILITAS MATHEMATICA, V87, P151
[4]  
Berlic M, 2015, MATCH-COMMUN MATH CO, V73, P443
[5]   On distances in benzenoid systems [J].
Chepoi, V .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1996, 36 (06) :1169-1172
[6]   The Wiener index and the Szeged index of benzenoid systems in linear time [J].
Chepoi, V ;
Klavzar, S .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1997, 37 (04) :752-755
[7]  
Chou CP, 2014, MATCH-COMMUN MATH CO, V71, P741
[8]   The edge-Wiener index of a graph [J].
Dankelmann, P. ;
Gutman, I. ;
Mukwembi, S. ;
Swart, H. C. .
DISCRETE MATHEMATICS, 2009, 309 (10) :3452-3457
[9]  
Dobrynin A., 1999, Graph Theory Notes NY, V37, P8
[10]   Wiener index for graphs and their line graphs with arbitrary large cyclomatic numbers [J].
Dobrynin, AA ;
Mel'nikov, LS .
APPLIED MATHEMATICS LETTERS, 2005, 18 (03) :307-312