Passivity and complementarity

被引:23
作者
Camlibel, M. K. [1 ,2 ]
Iannelli, L. [3 ]
Vasca, F. [3 ]
机构
[1] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
[2] Dogus Univ, Dept Elect & Commun Engn, TR-34722 Istanbul, Turkey
[3] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy
关键词
LINEAR-SYSTEMS; CONTROLLABILITY; STABILITY;
D O I
10.1007/s10107-013-0678-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper studies the interaction between the notions of passivity of systems theory and complementarity of mathematical programming in the context of complementarity systems. These systems consist of a dynamical system (given in the form of state space representation) and complementarity relations. We study existence, uniqueness, and nature of solutions for this system class under a passivity assumption on the dynamical part. A complete characterization of the initial states and the inputs for which a solution exists is given. These initial states are called consistent states. For the inconsistent states, we introduce a solution concept in the framework of distributions.
引用
收藏
页码:531 / 563
页数:33
相关论文
共 43 条
[1]  
[Anonymous], 1978, THEORIE DISTRIBUTION
[2]  
[Anonymous], 1999, THESIS EINDHOVEN U T
[3]   On the equivalence between complementarity systems, projected systems and differential inclusions [J].
Brogliato, B ;
Daniilidis, A ;
Lemaréchal, C ;
Acary, V .
SYSTEMS & CONTROL LETTERS, 2006, 55 (01) :45-51
[4]   Some results on the controllability of planar variational inequalities [J].
Brogliato, B .
SYSTEMS & CONTROL LETTERS, 2005, 54 (01) :65-71
[5]   Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings [J].
Brogliato, B .
SYSTEMS & CONTROL LETTERS, 2004, 51 (05) :343-353
[6]   Some perspectives on the analysis and control of complementarity systems [J].
Brogliato, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (06) :918-935
[7]  
Brogliato B., 2007, COMMUNICATIONS CONTR
[8]  
Brogliato B, 2010, J CONVEX ANAL, V17, P961
[9]   Well-posedness, stability and invariance results for a class of multivalued Lur'e dynamical systems [J].
Brogliato, Bernard ;
Goeleven, Daniel .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) :195-212
[10]   A full characterization of stabilizability of bimodal piecewise linear systems with scalar inputs [J].
Camlibel, M. K. ;
Heemels, W. P. M. H. ;
Schumacher, J. M. .
AUTOMATICA, 2008, 44 (05) :1261-1267