The aim of our study was to test the hypothesis that a long-lasting N-butyl tetracaine nerve block (>2 wk) would be much more effective in the prevention of hyperalgesia caused by nerve transection than the shortlasting lidocaine block. The study was performed with the use of the saphenous nerve section model in rats. The saphenous nerve was exposed and injected with saline, lidocaine (37 mM), or N-butyl tetracaine (37 mM). Ten minutes later, the nerve was transected in some of the rats. The development of mechanical hyperalgesia (pressure threshold) of the hindpaw was assessed during a 5-wk period. In rats with saphenous nerve transection without nerve block (saline injection), 3 h after the transection, the pressure threshold decreased by approximately 30% (from 175 +/- 11 g to 122 +/- 23 g, P < 0.0001); the threshold increased somewhat the next day, then it remained stable for 2 wk, with a slow process of recovery afterward. N-butyl tetracaine block without nerve transection caused a slow-developing decrease in the pressure threshold with the first statistically significant change at the sixth day. The comparison of the preventive effects of lidocaine and N-butyl tetracaine blocks on early hyperalgesia caused by nerve transection demonstrated that both lidocaine and N-butyl tetracaine prevented hyperalgesia 3 h after the transection. However, the protective effect of lidocaine disappeared the next day. In contrast, N-butyl tetracaine prevented early hyperalgesia for almost a week. The slow-developing late hyperalgesia caused by longlasting nerve block makes it impossible to study the protective effect of such a block on late hyperalgesia caused by axotomy. As far as early hyperalgesia is concerned, the preventive effect of the N-butyl tetracaine was much longer than that of lidocaine and continued for approximately 1 wk. Implications: A long-lasting nerve block can prevent early hyperalgesia caused by nerve transection.