Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders

被引:66
作者
Rokicki, Jaroslav [1 ,2 ,3 ]
Wolfers, Thomas [1 ,2 ,3 ]
Nordhoy, Wibeke [4 ]
Tesli, Natalia [1 ,2 ]
Quintana, Daniel S. [1 ,2 ,3 ,6 ]
Alnaes, Dag [1 ,2 ]
Richard, Genevieve [1 ,2 ]
de Lange, Ann-Marie G. [1 ,2 ,3 ,5 ]
Lund, Martina J. [1 ,2 ]
Norbom, Linn [1 ,2 ,3 ,7 ]
Agartz, Ingrid [1 ,2 ,6 ,8 ,9 ,10 ]
Melle, Ingrid [1 ,2 ]
Naerland, Terje [6 ]
Selbaek, Geir [10 ,11 ,12 ]
Persson, Karin [10 ]
Nordvik, Jan Egil [13 ]
Schwarz, Emanuel [14 ]
Andreassen, Ole A. [1 ,2 ,6 ]
Kaufmann, Tobias [1 ,2 ]
Westlye, Lars T. [1 ,2 ,3 ,6 ]
机构
[1] Univ Oslo, Norwegian Ctr Mental Disorders Res NORMENT, Inst Clin Med, Oslo, Norway
[2] Oslo Univ Hosp, Div Mental Hlth & Addict, Oslo, Norway
[3] Univ Oslo, Dept Psychol, POB 1094, N-0317 Oslo, Norway
[4] Oslo Univ Hosp, Dept Diagnost Phys, Div Radiol & Nucl Med, Oslo, Norway
[5] Univ Oxford, Dept Psychiat, Oxford, England
[6] Univ Oslo, KG Jebsen Ctr Neurodev Disorders, Oslo, Norway
[7] Diakonhjemmet Hosp, Dept Psychiat Res, Oslo, Norway
[8] Karolinska Inst, Ctr Psychiat Res, Dept Clin Neurosci, Stockholm, Sweden
[9] Stockholm Cty Council, Stockholm Hlth Care Serv, Stockholm, Sweden
[10] Vestfold Hosp Trust, Norwegian Natl Advisory Unit Ageing & Hlth, Tonsberg, Norway
[11] Oslo Univ Hosp, Dept Geriatr Med, Oslo, Norway
[12] Univ Oslo, Fac Med, Inst Clin Med, Oslo, Norway
[13] CatoSenteret Rehabil Ctr, Son, Norway
[14] Heidelberg Univ, Med Fac Mannheim, Cent Inst Mental Hlth, Dept Psychiat & Psychotherapy, Mannheim, Germany
基金
欧盟地平线“2020”;
关键词
arterial spin labeling; brain age; brain disorders; cerebral blood flow; machine learning; MRI; multimodal imaging; T1w; T2w ratio; CEREBRAL-BLOOD-FLOW; SPIN-LABELING PERFUSION; BIPOLAR DISORDER; LIFE-SPAN; WHITE-MATTER; CORTICAL THICKNESS; STRUCTURAL MRI; SCHIZOPHRENIA; REGIONS; DEPENDENCE;
D O I
10.1002/hbm.25323
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The deviation between chronological age and age predicted using brain MRI is a putative marker of overall brain health. Age prediction based on structural MRI data shows high accuracy in common brain disorders. However, brain aging is complex and heterogenous, both in terms of individual differences and the underlying biological processes. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub-cortical volumes, cortical and subcortical T1/T2-weighted ratios, and cerebral blood flow (CBF) based on arterial spin labeling. For each of the 11 models we assessed the age prediction accuracy in healthy controls (HC, n = 750) and compared the obtained brain age gaps (BAGs) between age-matched subsets of HC and patients with Alzheimer's disease (AD, n = 54), mild (MCI, n = 90) and subjective (SCI, n = 56) cognitive impairment, schizophrenia spectrum (SZ, n = 159) and bipolar disorder (BD, n = 135). We found highest age prediction accuracy in HC when integrating all modalities. Furthermore, two-group case-control classifications revealed highest accuracy for AD using global T1-weighted BAG, while MCI, SCI, BD and SZ showed strongest effects in CBF-based BAGs. Combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders. The multimodal BAG was most accurate in predicting age in HC, while group differences between patients and HC were often larger for BAGs based on single modalities. These findings indicate that multidimensional neuroimaging of patients may provide a brain-based mapping of overlapping and distinct pathophysiology in common disorders.
引用
收藏
页码:1714 / 1726
页数:13
相关论文
共 77 条
[1]   Alzheimer's disease as homeostatic responses to age-related myelin breakdown [J].
Bartzokis, George .
NEUROBIOLOGY OF AGING, 2011, 32 (08) :1341-1371
[2]   MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide [J].
Bashyam, Vishnu M. ;
Erus, Guray ;
Doshi, Jimit ;
Habes, Mohamad ;
Nasralah, Ilya ;
Truelove-Hill, Monica ;
Srinivasan, Dhivya ;
Mamourian, Liz ;
Pomponio, Raymond ;
Fan, Yong ;
Launer, Lenore J. ;
Masters, Colin L. ;
Maruff, Paul ;
Zhuo, Chuanjun ;
Volzke, Henry ;
Johnson, Sterling C. ;
Fripp, Jurgen ;
Koutsouleris, Nikolaos ;
Satterthwaite, Theodore D. ;
Wolf, Daniel ;
Gur, Raquel E. ;
Gur, Ruben C. ;
Morris, John ;
Albert, Marilyn S. ;
Grabe, Hans J. ;
Resnick, Susan ;
Bryan, R. Nick ;
Wolk, David A. ;
Shou, Haochang ;
Davatzikos, Christos .
BRAIN, 2020, 143 :2312-2324
[3]   White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction [J].
Beck, Dani ;
de Lange, Ann-Marie G. ;
Maximov, Ivan I. ;
Richard, Genevieve ;
Andreassen, Ole A. ;
Nordvik, Jan E. ;
Westlye, Lars T. .
NEUROIMAGE, 2021, 224
[4]   T1-weighted MRI-driven Brain Age Estimation in Alzheimer's Disease and Parkinson's Disease [J].
Beheshti, Iman ;
Mishra, Shiwangi ;
Sone, Daichi ;
Khanna, Pritee ;
Matsuda, Hiroshi .
AGING AND DISEASE, 2020, 11 (03) :618-628
[5]   The association between "Brain-Age Score" (BAS) and traditional neuropsychological screening tools in Alzheimer's disease [J].
Beheshti, Iman ;
Maikusa, Norihide ;
Matsuda, Hiroshi .
BRAIN AND BEHAVIOR, 2018, 8 (08)
[6]   Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling [J].
Biagi, Laura ;
Abbruzzese, Arturo ;
Bianchi, Maria Cristina ;
Alsop, David C. ;
Del Guerra, Alberto ;
Tosetti, Michela .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 25 (04) :696-702
[7]  
Boehmke Brad, 2019, HANDS MACHINE LEARNI
[8]   Brain volumes in relatives of patients with schizophrenia - A meta-analysis [J].
Boos, Heleen B. M. ;
Aleman, Andre ;
Cahn, Wiepke ;
Pol, Hilleke Hulshoff ;
Kahn, Rene S. .
ARCHIVES OF GENERAL PSYCHIATRY, 2007, 64 (03) :297-304
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   Neuroanatomical Assessment of Biological Maturity [J].
Brown, Timothy T. ;
Kuperman, Joshua M. ;
Chung, Yoonho ;
Erhart, Matthew ;
McCabe, Connor ;
Hagler, Donald J., Jr. ;
Venkatraman, Vijay K. ;
Akshoomoff, Natacha ;
Amaral, David G. ;
Bloss, Cinnamon S. ;
Casey, B. J. ;
Chang, Linda ;
Ernst, Thomas M. ;
Frazier, Jean A. ;
Gruen, Jeffrey R. ;
Kaufmann, Walter E. ;
Kenet, Tal ;
Kennedy, David N. ;
Murray, Sarah S. ;
Sowell, Elizabeth R. ;
Jernigan, Terry L. ;
Dale, Anders M. .
CURRENT BIOLOGY, 2012, 22 (18) :1693-1698