Microelectrode Biosensors for invivo Analysis of Brain Interstitial Fluid

被引:20
作者
Chatard, Charles [1 ,3 ]
Meiller, Anne [2 ,3 ]
Marinesco, Stephane [1 ,2 ,3 ,4 ]
机构
[1] Team TIGER, Lyon Neurosci Res Ctr, CNRS, UMR5292,INSERM,U1028, Lyon, France
[2] AniRA Neurochem Technol Platform, Lyon, France
[3] Univ Claude Bernard Lyon 1, Lyon, France
[4] Fac Med, Team TIGER, Lyon Neurosci Res Ctr, 8 Ave Rockefeller, F-69373 Lyon 08, France
关键词
enzyme; oxidase; electrochemistry; biocompatibility; brain monitoring; ENZYME COMPOSITE BIOSENSOR; SCAN CYCLIC VOLTAMMETRY; REAL-TIME MEASUREMENT; NITRIC-OXIDE RELEASE; L-GLUTAMATE OXIDASE; GLUCOSE-OXIDASE; ACETYLCHOLINE-RELEASE; ELECTROCHEMICAL OXIDATION; EXTRACELLULAR GLUTAMATE; BASOLATERAL AMYGDALA;
D O I
10.1002/elan.201700836
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Chemical analyses of brain interstitial fluid can reveal important information about local brain metabolism and neurochemistry, and can enhance our understanding of how neuronal networks respond to physiological or pathological stimuli. Among brain monitoring methods currently available, microelectrode biosensors provide real-time analyses with high temporal resolution and minimal perturbation to living tissue by using oxidase enzymes for biological recognition. Two types of microelectrodes are used: cylindrically shaped wire electrodes provide the smallest implantable devices to date, and microfabricated multi-electrode needles can monitor several molecules simultaneously. They have already contributed significantly to our understanding of brain energy metabolism with glucose and lactate detection, and to neurotransmitter systems with glutamate, D-serine, acetylcholine, and purine detection. They have the potential to undergo further technological developments in future studies.
引用
收藏
页码:977 / 998
页数:22
相关论文
共 229 条
[1]  
Altuna A., 2015, FRONT MAT, V2, P1
[2]   Nitric oxide release during evoked neuronal activity in cerebellum slices: Detection with platinized carbon-fiber microelectrodes [J].
Amatore, C ;
Arbault, S ;
Bouret, Y ;
Cauli, B ;
Guille, M ;
Rancillac, A ;
Rossier, J .
CHEMPHYSCHEM, 2006, 7 (01) :181-187
[3]   Foreign body reaction to biomaterials [J].
Anderson, James M. ;
Rodriguez, Analiz ;
Chang, David T. .
SEMINARS IN IMMUNOLOGY, 2008, 20 (02) :86-100
[4]  
[Anonymous], SENSORS, DOI DOI 10.3390/S17020390
[5]   Recombinant expression, biochemical characterization and stabilization through proteolysis of an L-glutamate oxidase from Streptomyces sp X-119-6 [J].
Arima, J ;
Tamura, T ;
Kusakabe, H ;
Ashiuchi, M ;
Yagi, T ;
Tanaka, H ;
Inagaki, K .
JOURNAL OF BIOCHEMISTRY, 2003, 134 (06) :805-812
[6]   Glutamate Clearance Is Locally Modulated by Presynaptic Neuronal Activity in the Cerebral Cortex [J].
Armbruster, Moritz ;
Hanson, Elizabeth ;
Dulla, Chris G. .
JOURNAL OF NEUROSCIENCE, 2016, 36 (40) :10404-10415
[7]   NONVESICULAR RELEASE OF NEUROTRANSMITTER [J].
ATTWELL, D ;
BARBOUR, B ;
SZATKOWSKI, M .
NEURON, 1993, 11 (03) :401-407
[8]   Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-Up Primate Brain [J].
Azevedo, Frederico A. C. ;
Carvalho, Ludmila R. B. ;
Grinberg, Lea T. ;
Farfel, Jose Marcelo ;
Ferretti, Renata E. L. ;
Leite, Renata E. P. ;
Jacob Filho, Wilson ;
Lent, Roberto ;
Herculano-Houzel, Suzana .
JOURNAL OF COMPARATIVE NEUROLOGY, 2009, 513 (05) :532-541
[9]   CHANGES IN EXTRACELLULAR CONCENTRATIONS OF GLUTAMATE, ASPARTATE, GLYCINE, DOPAMINE, SEROTONIN, AND DOPAMINE METABOLITES AFTER TRANSIENT GLOBAL-ISCHEMIA IN THE RABBIT BRAIN [J].
BAKER, AJ ;
ZORNOW, MH ;
SCHELLER, MS ;
YAKSH, TL ;
SKILLING, SR ;
SMULLIN, DH ;
LARSON, AA ;
KUCZENSKI, R .
JOURNAL OF NEUROCHEMISTRY, 1991, 57 (04) :1370-1379
[10]   Altered hypermetabolic response to cortical spreading depolarizations after traumatic brain injury in rats [J].
Balanca, Baptiste ;
Meiller, Anne ;
Bezin, Laurent ;
Dreier, Jens P. ;
Marinesco, Stephane ;
Lieutaud, Thomas .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2017, 37 (05) :1670-1686