Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents

被引:48
作者
Kim, Eunjung [2 ]
Yang, Jaemoon [1 ]
Choi, Jihye [2 ]
Suh, Jin-Suck [1 ]
Huh, Yong-Min [1 ]
Haam, Seungjoo [2 ]
机构
[1] Yonsei Univ, Coll Med, Dept Radiol, Seoul 120752, South Korea
[2] Yonsei Univ, Coll Engn, Dept Chem & Biomol Engn, Seoul 120749, South Korea
关键词
THERAPY; CELL; NANOHYBRIDS; SINGLE; GROWTH;
D O I
10.1088/0957-4484/20/36/365602
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For the synthesis of biocompatible photothermal agents, gold nanorod-embedded polymeric nanoparticles (GPNs) were synthesized using a nanoprecipitation method. Uniform gold nanorods (GNRs), which are sensitive to a photothermal effect by near-infrared (NIR) light, with an aspect ratio of 4.0 were synthesized by a seed-mediated growth method. The hydroxyl groups of polycaprolactone diol (PCL diOH) were modified by esterification with mercaptopropionic acid to give a dithiol (polycaprolactone dithiol, PCL diSH) as a phase transfer and capping agent. Subsequently, hexadecyltrimethylammonium bromide (CTAB), a stabilizer of GNRs, was exchanged and/or removed by PCL diSH. PCL diSH-coated GNRs were further wrapped in a hydrophilic polymer, Pluronic F127, as a stabilizer. These newly formulated GPNs exhibit excellent stability in water and a maximum absorbance in the NIR region indicating a highly efficient surface plasmon resonance effect, phenomena useful for photothermal agents.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects [J].
Alkilany, Alaaldin M. ;
Nagaria, Pratik K. ;
Hexel, Cole R. ;
Shaw, Timothy J. ;
Murphy, Catherine J. ;
Wyatt, Michael D. .
SMALL, 2009, 5 (06) :701-708
[2]   Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles [J].
Bilati, U ;
Allémann, E ;
Doelker, E .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2005, 24 (01) :67-75
[3]   Thermal ablation of tumor cells with anti body-functionalized single-walled carbon nanotubes [J].
Chakravarty, Pavitra ;
Marches, Radu ;
Zimmerman, Neil S. ;
Swafford, Austin D. -E. ;
Bajaj, Pooja ;
Musselman, Inga H. ;
Pantano, Paul ;
Draper, Rockford K. ;
Vitetta, Ellen S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (25) :8697-8702
[4]   The potential environmental impact of engineered nanomaterials [J].
Colvin, VL .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1166-1170
[5]   Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J].
Connor, EE ;
Mwamuka, J ;
Gole, A ;
Murphy, CJ ;
Wyatt, MD .
SMALL, 2005, 1 (03) :325-327
[6]   Arrhenius relationships from the molecule and cell to the clinic [J].
Dewey, W. C. .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2009, 25 (01) :3-20
[7]   Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance [J].
Hirsch, LR ;
Stafford, RJ ;
Bankson, JA ;
Sershen, SR ;
Rivera, B ;
Price, RE ;
Hazle, JD ;
Halas, NJ ;
West, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (23) :13549-13554
[8]   Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J].
Huang, XH ;
El-Sayed, IH ;
Qian, W ;
El-Sayed, MA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (06) :2115-2120
[9]   Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction [J].
Kam, NWS ;
O'Connell, M ;
Wisdom, JA ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (33) :11600-11605
[10]   Red photoluminescence of gold island films [J].
Khriachtchev, L ;
Heikkilä, L ;
Kuusela, T .
APPLIED PHYSICS LETTERS, 2001, 78 (14) :1994-1996