Discretization of the Euler top

被引:56
作者
Hirota, R [1 ]
Kimura, K [1 ]
机构
[1] Waseda Univ, Dept Informat & Comp Sci, Tokyo 1690072, Japan
关键词
Euler top; discretization; integrable system;
D O I
10.1143/JPSJ.69.627
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Euler top described by the equations I(1)d omega(1)/dt (I-2 - I-3)omega(2)omega(3), I(2)d omega(2)/dt = (I-3 - I-1)omega(3)omega(1), I(3)d omega(3)/dt = (I-1 - I-2)omega(1)omega(2), is discretized in the following form I-1[omega(1)(t+delta)-omega(1)(t)] = 1/2 delta(I-2-I-3)[omega(2)(t+delta)omega(3)(t) + omega(2)(t)omega(3)(t + delta)], I-2[omega(2)(t + delta) - omega(2)(t)] = 1/2 delta(I-3 - I-1)[omega(3)(t + delta)omega(1)(t) + omega(3)(t)omega(1)(t + delta)], I-3[omega(3)(t + delta) - omega(3)(t)] = 1/2 delta(I-1 - I)[omega(1)(t + delta)omega(2)(t) + omega(1)(t)omega(2)(t + delta)], which exhibits conserved quantities and exact solutions.
引用
收藏
页码:627 / 630
页数:4
相关论文
共 8 条
[1]  
BOBENKO AI, 1994, 288 SFB
[2]  
BOBENKO AI, SOLVINT9803016
[3]   NON-LINEAR PARTIAL DIFFERENCE EQUATIONS .5. NON-LINEAR EQUATIONS REDUCIBLE TO LINEAR EQUATIONS [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1979, 46 (01) :312-319
[5]   NONLINEAR PARTIAL DIFFERENCE EQUATIONS .1. DIFFERENCE ANALOG OF KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1977, 43 (04) :1424-1433
[6]   INTEGRABLE LATTICES AND CONVERGENCE ACCELERATION ALGORITHMS [J].
PAPAGEORGIOU, V ;
GRAMMATICOS, B ;
RAMANI, A .
PHYSICS LETTERS A, 1993, 179 (02) :111-115
[7]   From soliton equations to integrable cellular automata through a limiting procedure [J].
Tokihiro, T ;
Takahashi, D ;
Matsukidaira, J ;
Satsuma, J .
PHYSICAL REVIEW LETTERS, 1996, 76 (18) :3247-3250
[8]  
ZABRODIN A, 1996, ITEPTH4496