The Euler-Lagrange equation and heat flow for the Mobius energy

被引:0
作者
He, ZX [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the following results: 1. A unique smooth solution exists for a short time for the heat equation associated with the Mobius energy of loops in a euclidean space, starting with any simple smooth loop. 2. A critical loop of the energy is smooth if it has cube-integrable curvature. Combining this with an earlier result of M. Freedman, Z. Wang, and the author, we show that any local minimizer of the energy must be smooth. 3. Circles are the only two-dimensional critical loops with cube-integrable curvature. The technique also applies to a family of other knot energies. Similar problems are open for energies of surfaces or, more generally, for embedded submanifolds in a fixed Riemannian manifold. (C) 2000 John Wiley & Sons, Inc.
引用
收藏
页码:399 / 431
页数:33
相关论文
共 37 条
  • [1] Arnold I., 1986, SEL MATH SOV, V5, P327
  • [2] AUCKLY D, 1997, GEOMETRIC TOPOLOGY, P235
  • [3] The beta function of a knot
    Brylinski, JL
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (04) : 415 - 423
  • [4] MOBIUS INVARIANCE OF KNOT ENERGY
    BRYSON, S
    FREEDMAN, MH
    HE, ZX
    WANG, ZH
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 28 (01) : 99 - 103
  • [5] COMPUTING CANONICAL CONFORMATIONS FOR KNOTS
    BUCK, G
    ORLOFF, J
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1993, 51 (03) : 247 - 253
  • [6] KNOTS AS DYNAMICAL-SYSTEMS
    BUCK, G
    SIMON, J
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1993, 51 (03) : 229 - 246
  • [7] A SIMPLE ENERGY FUNCTION FOR KNOTS
    BUCK, G
    ORLOFF, J
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1995, 61 (03) : 205 - 214
  • [8] CANTARELLA J, 1997, ROPELENGTH CROSSING
  • [9] CANTARELLA J, IN PRESS NATURE
  • [10] CANTARELLA J, 1997, UPPER BOUNDS WRITHE