Experimentally Validated hERG Pharmacophore Models as Cardiotoxicity Prediction Tools

被引:46
作者
Kratz, Jadel M. [1 ,2 ,3 ]
Schuster, Daniela [3 ,4 ]
Edtbauer, Michael [3 ,4 ]
Saxena, Priyanka [5 ]
Mair, Christina E. [2 ,3 ]
Kirchebner, Julia [3 ,4 ]
Matuszczak, Barbara [3 ,4 ]
Baburin, Igor [5 ]
Hering, Steffen [5 ]
Rollinger, Judith M. [2 ,3 ]
机构
[1] Univ Fed Santa Catarina, Dept Ciencias Farmaceut, BR-88040900 Florianopolis, SC, Brazil
[2] Univ Innsbruck, Inst Pharm Pharmacognosy, A-6020 Innsbruck, Austria
[3] Univ Innsbruck, Ctr Mol Biosci Innsbruck, A-6020 Innsbruck, Austria
[4] Univ Innsbruck, Inst Pharm Pharmaceut Chem, A-6020 Innsbruck, Austria
[5] Univ Vienna, Dept Pharmacol & Toxicol, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
ION-CHANNEL; POTASSIUM CHANNELS; K+ CHANNELS; CONFORMER GENERATION; INHIBITION; DRUGS; ELECTROPHYSIOLOGY; H-1-ANTIHISTAMINES; DISSOCIATION; PROLONGATION;
D O I
10.1021/ci5001955
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The goal of this study was to design, experimentally validate, and apply a virtual screening workflow to identify novel hERG channel blockers. The hERG channel is an important antitarget in drug development since cardiotoxic risks remain as a major cause of attrition. A ligand-based pharmacophore model collection was developed and theoretically validated. The seven most complementary and suitable models were used for virtual screening of in-house and commercially available compound libraries. From the hit lists, 50 compounds were selected for experimental validation through bioactivity assessment using patch clamp techniques. Twenty compounds inhibited hERG channels expressed in HEK 293 cells with IC50 values ranging from 0.13 to 2.77 mu M, attesting to the suitability of the models as cardiotoxicity prediction tools in a preclinical stage.
引用
收藏
页码:2887 / 2901
页数:15
相关论文
共 74 条
[1]  
*ACC SOFTW INC, 2003, CAT SOFTW PACK VERS
[2]  
[Anonymous], 2010, Drug Discov Today Technol, V7, pe203, DOI 10.1016/j.ddtec.2010.11.004
[3]  
[Anonymous], 2009, OMEGA VERS 2 3 3
[4]  
[Anonymous], 2005, GLOB GUID TYP 2 DIAB, P1
[5]   Predictive in silico modeling for hERG channelblockers [J].
Aronov, MM .
DRUG DISCOVERY TODAY, 2005, 10 (02) :149-155
[6]   Automated fast perfusion of Xenopus oocytes for drug screening [J].
Baburin, I. ;
Beyl, S. ;
Hering, S. .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2006, 453 (01) :117-123
[7]   Evaluation of an in silico cardiac safety assay: Using ion channel screening data to predict QT interval changes in the rabbit ventricular wedge [J].
Beattie, Kylie A. ;
Luscombe, Chris ;
Williams, Geoff ;
Munoz-Muriedas, Jordi ;
Gavaghan, David J. ;
Cui, Yi ;
Mirams, Gary R. .
JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2013, 68 (01) :88-96
[8]   QSAR Modeling and Data Mining Link Torsades de Pointes Risk to the Interplay of Extent of Metabolism, Active Transport, and hERG Liability [J].
Broccatelli, Fabio ;
Mannhold, Raimund ;
Moriconi, Alessio ;
Giuli, Sandra ;
Carosati, Emanuele .
MOLECULAR PHARMACEUTICS, 2012, 9 (08) :2290-2301
[9]   Toward a pharmacophore for drugs inducing the long QT syndrome:: Insights from a CoMFA study of HERG K+ channel blockers [J].
Cavalli, A ;
Poluzzi, E ;
De Ponti, F ;
Recanatini, M .
JOURNAL OF MEDICINAL CHEMISTRY, 2002, 45 (18) :3844-3853
[10]   Revolution dawning in cardiotoxicity testing [J].
Chi, Kelly Rae .
NATURE REVIEWS DRUG DISCOVERY, 2013, 12 (08) :564-566