Pooled Association Tests for Rare Genetic Variants: A Review and Some New Results

被引:55
作者
Derkach, Andriy [1 ]
Lawless, Jerry F. [2 ,3 ]
Sun, Lei [1 ,3 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON 1M5S 3G3, Canada
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[3] Univ Toronto, Dalla Lana Sch Publ Hlth, Div Biostat, Toronto, ON M5T 3M7, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Linear statistics; quadratic statistics; score tests; weighting; power; next generation sequencing; complex traits; LINKAGE DISEQUILIBRIUM; SEQUENCING ASSOCIATION; DISEASE ASSOCIATION; STATISTICAL TESTS; COMMON DISEASES; HUMAN GENOME; TRAITS; LOCI;
D O I
10.1214/13-STS456
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the search for genetic factors that are associated with complex heritable human traits, considerable attention is now being focused on rare variants that individually have small effects. In response, numerous recent papers have proposed testing strategies to assess association between a group of rare variants and a trait, with competing claims about the performance of various tests. The power of a given test in fact depends on the nature of any association and on the rareness of the variants in question. We review such tests within a general framework that covers a wide range of genetic models and types of data. We study the performance of specific tests through exact or asymptotic power formulas and through novel simulation studies of over 10,000 different models. The tests considered are also applied to real sequence data from the 1000 Genomes project and provided by the GAW17. We recommend a testing strategy, but our results show that power to detect association in plausible genetic scenarios is low for studies of medium size unless a high proportion of the chosen variants are causal. Consequently, considerable attention must be given to relevant biological information that can guide the selection of variants for testing.
引用
收藏
页码:302 / 321
页数:20
相关论文
共 38 条
  • [1] Genetic Analysis Workshop 17 mini-exome simulation
    Laura Almasy
    Thomas D Dyer
    Juan Manuel Peralta
    Jack W Kent
    Jac C Charlesworth
    Joanne E Curran
    John Blangero
    [J]. BMC Proceedings, 5 (Suppl 9)
  • [2] A map of human genome variation from population-scale sequencing
    Altshuler, David
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Collins, Francis S.
    De la Vega, Francisco M.
    Donnelly, Peter
    Egholm, Michael
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Knoppers, Bartha M.
    Lander, Eric S.
    Lehrach, Hans
    Mardis, Elaine R.
    McVean, Gil A.
    Nickerson, DebbieA.
    Peltonen, Leena
    Schafer, Alan J.
    Sherry, Stephen T.
    Wang, Jun
    Wilson, Richard K.
    Gibbs, Richard A.
    Deiros, David
    Metzker, Mike
    Muzny, Donna
    Reid, Jeff
    Wheeler, David
    Wang, Jun
    Li, Jingxiang
    Jian, Min
    Li, Guoqing
    Li, Ruiqiang
    Liang, Huiqing
    Tian, Geng
    Wang, Bo
    Wang, Jian
    Wang, Wei
    Yang, Huanming
    Zhang, Xiuqing
    Zheng, Huisong
    Lander, Eric S.
    Altshuler, David L.
    Ambrogio, Lauren
    Bloom, Toby
    Cibulskis, Kristian
    Fennell, Tim J.
    Gabriel, Stacey B.
    [J]. NATURE, 2010, 467 (7319) : 1061 - 1073
  • [3] [Anonymous], 1980, Multivariate Analysis
  • [4] Rare Variant Association Analysis Methods for Complex Traits
    Asimit, Jennifer
    Zeggini, Eleftheria
    [J]. ANNUAL REVIEW OF GENETICS, VOL 44, 2010, 44 : 293 - 308
  • [5] Statistical analysis strategies for association studies involving rare variants
    Bansal, Vikas
    Libiger, Ondrej
    Torkamani, Ali
    Schork, Nicholas J.
    [J]. NATURE REVIEWS GENETICS, 2010, 11 (11) : 773 - 785
  • [6] Detecting Rare Variant Effects Using Extreme Phenotype Sampling in Sequencing Association Studies
    Barnett, Ian J.
    Lee, Seunggeun
    Lin, Xihong
    [J]. GENETIC EPIDEMIOLOGY, 2013, 37 (02) : 142 - 151
  • [7] Comparison of Statistical Tests for Disease Association With Rare Variants
    Basu, Saonli
    Pan, Wei
    [J]. GENETIC EPIDEMIOLOGY, 2011, 35 (07) : 606 - 619
  • [8] A powerful test for multiple rare variants association studies that incorporates sequencing qualities
    Daye, Z. John
    Li, Hongzhe
    Wei, Zhi
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (08) : e60
  • [9] DERKACH A, 2013, POOLED ASS TESTS R S, DOI [10.1214/13-STS456SUPP., DOI 10.1214/13-STS456SUPP]
  • [10] Evaluation of gene-based association tests for analyzing rare variants using Genetic Analysis Workshop 18 data
    Andriy Derkach
    Jerry F Lawless
    Daniele Merico
    Andrew D Paterson
    Lei Sun
    [J]. BMC Proceedings, 8 (Suppl 1)