Topological recursive relations in H2g(Mg,n)

被引:49
作者
Ionel, EN [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
D O I
10.1007/s002220100205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any degree at least g monomial in descendant or tautological classes vanishes on M-g,M-n when g greater than or equal to 2. This generalizes a result of Looijenga and proves a version of Getzler's conjecture. The method we use is the study of the relative Gromov-Witten invariants of P-1 relative to two points combined with the degeneration formulas of [IP1].
引用
收藏
页码:627 / 658
页数:32
相关论文
共 17 条
[1]  
ABRAMOVICH D, MATHAG9908167
[2]  
[Anonymous], 1998, Integrable systems and algebraic geometry, P73
[3]  
Belorousski P, 2000, ANN SCUOLA NORM-SCI, V29, P171
[4]   Counting plane curves of any genus [J].
Caporaso, L ;
Harris, J .
INVENTIONES MATHEMATICAE, 1998, 131 (02) :345-392
[5]  
Faber C., 1999, ASPECTS MATH E, VE33, P109
[6]   Virasoro constraints and the Chern classes of the Hodge bundle [J].
Getzler, E ;
Pandharipande, R .
NUCLEAR PHYSICS B, 1998, 530 (03) :701-714
[7]   ON THE KODAIRA DIMENSION OF THE MODULI SPACE OF CURVES [J].
HARRIS, J ;
MUMFORD, D .
INVENTIONES MATHEMATICAE, 1982, 67 (01) :23-86
[8]  
Harris J, 1998, GRAD TEXT M, V187
[9]  
IONEL E, MATHSG0010217
[10]  
Ionel EN, 1998, MATH RES LETT, V5, P563