Simultaneous Fenton-like Ion Delivery and Glutathione Depletion by MnO2-Based Nanoagent to Enhance Chemodynamic Therapy

被引:1397
作者
Lin, Li-Sen [1 ,2 ]
Song, Jibin [1 ,2 ]
Song, Liang [1 ]
Ke, Kaimei [1 ]
Liu, Yijing [2 ]
Zhou, Zijian [2 ]
Shen, Zheyu [2 ]
Li, Juan [1 ]
Yang, Zhen [2 ]
Tang, Wei [2 ]
Niu, Gang [2 ]
Yang, Huang-Hao [1 ]
Chen, Xiaoyuan [2 ]
机构
[1] Fuzhou Univ, Key Lab Analyt Sci Food Safety & Biol, MOE, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
[2] NIBIB, LOMIN, NIH, Bethesda, MD 20892 USA
基金
中国国家自然科学基金;
关键词
antitumor agents; Fenton-like reaction; glutathione; imaging agents; manganese dioxide; CANCER-CELLS; HYDROGEN-PEROXIDE; OXYGEN; APOPTOSIS; NANOPARTICLES; NANOCARRIERS; CHEMOTHERAPY; RADIOTHERAPY; FERROPTOSIS; MODULATION;
D O I
10.1002/anie.201712027
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chemodynamic therapy (CDT) utilizes iron-initiated Fenton chemistry to destroy tumor cells by converting endogenous H2O2 into the highly toxic hydroxyl radical ((OH)-O-.). There is a paucity of Fenton-like metal-based CDT agents. Intracellular glutathione (GSH) with center dot OH scavenging ability greatly reduces CDT efficacy. A self-reinforcing CDT nanoagent based on MnO2 is reported that has both Fenton-like Mn2+ delivery and GSH depletion properties. In the presence of HCO3-, which is abundant in the physiological medium, Mn2+ exerts Fenton-like activity to generate center dot OH from H2O2. Upon uptake of MnO2-coated mesoporous silica nanoparticles (MS@MnO2 NPs) by cancer cells, the MnO2 shell undergoes a redox reaction with GSH to form glutathione disulfide and Mn2+, resulting in GSH depletion-enhanced CDT. This, together with the GSH-activated MRI contrast effect and dissociation of MnO2, allows MS@MnO2 NPs to achieve MRI-monitored chemo-chemodynamic combination therapy.
引用
收藏
页码:4902 / 4906
页数:5
相关论文
共 45 条
[1]  
[Anonymous], 2016, ANGEW CHEM INT ED, DOI DOI 10.1002/ange.201605509
[2]  
[Anonymous], 2016, ANGEW CHEM INT EDIT, DOI [DOI 10.1002/ange.201510031, DOI 10.1002/ANGE.201510031]
[3]  
ARRICK BA, 1984, CANCER RES, V44, P4224
[4]   Indirect detection of photosensitizer ex vivo [J].
Bourré, L ;
Thibaut, S ;
Briffaud, A ;
Rousset, N ;
Eléouet, S ;
Lajat, Y ;
Patrice, T .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2002, 67 (01) :23-31
[5]   Triggering and modulation of apoptosis by oxidative stress [J].
Chandra, J ;
Samali, A ;
Orrenius, S .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 29 (3-4) :323-333
[6]   Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens [J].
Deák, M ;
Horváth, GV ;
Davletova, S ;
Török, K ;
Sass, L ;
Vass, I ;
Barna, B ;
Király, Z ;
Dudits, D .
NATURE BIOTECHNOLOGY, 1999, 17 (02) :192-196
[7]   Intracellular Glutathione Detection Using MnO2-Nanosheet-Modified Upconversion Nanoparticles [J].
Deng, Renren ;
Xie, Xiaoji ;
Vendrell, Marc ;
Chang, Young-Tae ;
Liu, Xiaogang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (50) :20168-20171
[8]   Association of reactive oxygen species levels and radioresistance in cancer stem cells [J].
Diehn, Maximilian ;
Cho, Robert W. ;
Lobo, Neethan A. ;
Kalisky, Tomer ;
Dorie, Mary Jo ;
Kulp, Angela N. ;
Qian, Dalong ;
Lam, Jessica S. ;
Ailles, Laurie E. ;
Wong, Manzhi ;
Joshua, Benzion ;
Kaplan, Michael J. ;
Wapnir, Irene ;
Dirbas, Frederick M. ;
Somlo, George ;
Garberoglio, Carlos ;
Paz, Benjamin ;
Shen, Jeannie ;
Lau, Sean K. ;
Quake, Stephen R. ;
Brown, J. Martin ;
Weissman, Irving L. ;
Clarke, Michael F. .
NATURE, 2009, 458 (7239) :780-U123
[9]   The role of iron and reactive oxygen species in cell death [J].
Dixon, Scott J. ;
Stockwell, Brent R. .
NATURE CHEMICAL BIOLOGY, 2014, 10 (01) :9-17
[10]   Metal ion-catalyzed oxidative degradation of Orange II by H2O2. High catalytic activity of simple manganese salts [J].
Ember, Erika ;
Rothbart, Sabine ;
Puchta, Ralph ;
van Eldik, Rudi .
NEW JOURNAL OF CHEMISTRY, 2009, 33 (01) :34-49