Digital backpropagation accounting for polarization-mode dispersion

被引:29
作者
Czegledi, Cristian B. [1 ]
Liga, Gabriele [2 ]
Lavery, Domanic [2 ]
Karlsson, Magnus [3 ]
Agrell, Erik [1 ]
Savory, Seb J. [4 ]
Bayvel, Polina [2 ]
机构
[1] Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden
[2] UCL, Dept Elect & Elect Engn, Opt Networks Grp, London WC1E 7JE, England
[3] Chalmers Univ Technol, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden
[4] Univ Cambridge, Dept Engn, Elect Engn Div, Cambridge CB3 0FA, England
基金
英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
NONLINEARITY COMPENSATION; TRANSMISSION; FIBER; PMD; SYSTEMS;
D O I
10.1364/OE.25.001903
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Digital backpropagation (DBP) is a promising digital-domain technique to mitigate Kerr-induced nonlinear interference. While it successfully removes deterministic signal-signal interactions, the performance of ideal DBP is limited by stochastic effects, such as polarizationmode dispersion (PMD). In this paper, we consider an ideal full-field DBP implementation and modify it to additionally account for PMD; reversing the PMD effects in the backward propagation by passing the reverse propagated signal also through PMD sections, which concatenated equal the inverse of the PMD in the forward propagation. These PMD sections are calculated analytically at the receiver based on the total accumulated PMD of the link estimated from channel equalizers. Numerical simulations show that, accounting for nonlinear polarization-related interactions in the modified DBP algorithm, additional signal-to-noise ratio gains of 1.1 dB are obtained for transmission over 1000 km. (C) 2017 Optical Society of America
引用
收藏
页码:1903 / 1915
页数:13
相关论文
共 33 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]  
Agrawal GP, 2013, 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC)
[3]  
[Anonymous], P INT C TRANSP OPT N
[4]  
Bellman R., 1960, Introduction to Matrix Analysis
[5]  
Czegledi C. B., 2016, P EUR C OPT COMM ECO, P1091
[6]  
Czegledi C. B., 2017, P OPT FIB COMM C OFC
[7]   Polarization Drift Channel Model for Coherent Fibre-Optic Systems [J].
Czegledi, Cristian B. ;
Karlsson, Magnus ;
Agrell, Erik ;
Johannisson, Pontus .
SCIENTIFIC REPORTS, 2016, 6
[8]   Electronic predistortion and fiber nonlinearity [J].
Essiambre, Rene-Jean ;
Winzer, Peter J. ;
Wang, Xun Qing ;
Lee, Wonsuck ;
White, Christopher A. ;
Burrows, Ells C. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (17-20) :1804-1806
[9]   Influence of PMD on fiber nonlinearity compensation using digital back propagation [J].
Gao, Guanjun ;
Chen, Xi ;
Shieh, William .
OPTICS EXPRESS, 2012, 20 (13) :14406-14418
[10]   Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping [J].
Gao, Ying ;
Cartledge, John C. ;
Karar, Abdullah S. ;
Yam, Scott S. -H. ;
O'Sullivan, Maurice ;
Laperle, Charles ;
Borowiec, Andrzej ;
Roberts, Kim .
OPTICS EXPRESS, 2014, 22 (02) :1209-1219