Learning Spatiotemporal Features With 3DCNN and ConvGRU for Video Anomaly Detection

被引:0
|
作者
Wang, Xin [1 ]
Xie, Weixin [1 ]
Song, Jiayi [1 ]
机构
[1] Shenzhen Univ, ATR Natl Key Lab Def Technol, Shenzhen, Peoples R China
来源
PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) | 2018年
关键词
3DCNN; ConvGRU; Video anomaly detection;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Video anomaly detection aims to analyze the abnormal events or behaviors from massive monitoring video data, which is extremely challenging due to the ambiguous definition of abnormal behavior and the complex monitoring scene. Feature representation based on the hand-crafted of video local spatial area is more complicated, and it is difficult to learn the essential feature from the input video. In this paper, a deep autoencoder network combined with 3DCNN and ConvGRU is proposed to learn the spatiotemporal features for video anomaly. Firstly, 3DCNN and bidirectional ConvGRU are used to encode the local-global spatial features and short-long-term temporal features in the spatiotemporal dimension. Secondly, the reconstruction branch is introduced to reconstruct video frames, while the prediction branch is utilized to make the encoder to learn the better spatiotemporal feature at the training phase. In addition, the regularization of adjacent frames in a loss function is carried on to improve the temporal feature. The weights of the C3D model trained by action recognition are transferred to 3DCNN to prevent model over fitting. Experiments on real anomaly datasets shows the effectiveness of our proposed deep model.
引用
收藏
页码:474 / 479
页数:6
相关论文
共 50 条
  • [1] Deep Multi-view Representation Learning for Video Anomaly Detection Using Spatiotemporal Autoencoders
    Deepak, K.
    Srivathsan, G.
    Roshan, S.
    Chandrakala, S.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (03) : 1333 - 1349
  • [2] Deep Multi-view Representation Learning for Video Anomaly Detection Using Spatiotemporal Autoencoders
    K. Deepak
    G. Srivathsan
    S. Roshan
    S. Chandrakala
    Circuits, Systems, and Signal Processing, 2021, 40 : 1333 - 1349
  • [3] Perceptual metric learning for video anomaly detection
    Ramachandra, Bharathkumar
    Jones, Michael
    Vatsavai, Ranga Raju
    MACHINE VISION AND APPLICATIONS, 2021, 32 (03)
  • [4] Normality Learning in Multispace for Video Anomaly Detection
    Zhang, Yu
    Nie, Xiushan
    He, Rundong
    Chen, Meng
    Yin, Yilong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (09) : 3694 - 3706
  • [5] Video anomaly detection guided by clustering learning
    Qiu, Shaoming
    Ye, Jingfeng
    Zhao, Jiancheng
    He, Lei
    Liu, Liangyu
    E, Bicong
    Huang, Xinchen
    PATTERN RECOGNITION, 2024, 153
  • [6] Perceptual metric learning for video anomaly detection
    Bharathkumar Ramachandra
    Michael Jones
    Ranga Raju Vatsavai
    Machine Vision and Applications, 2021, 32
  • [7] Point Cloud Video Anomaly Detection Based on Point Spatiotemporal Autoencoder
    He, Tengjiao
    Wang, Wenguang
    Zeng, Guoqi
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 20884 - 20895
  • [8] Learning Prompt-Enhanced Context Features for Weakly-Supervised Video Anomaly Detection
    Pu, Yujiang
    Wu, Xiaoyu
    Yang, Lulu
    Wang, Shengjin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4923 - 4936
  • [9] Multiple Instance Relational Learning for Video Anomaly Detection
    Dengxiong, Xiwen
    Bao, Wentao
    Kong, Yu
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [10] Review of Deep Learning-Based Video Anomaly Detection
    Ji G.
    Qi X.
    Wang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2024, 37 (02): : 128 - 143