RSTFC: A Novel Algorithm for Spatio-Temporal Filtering and Classification of Single-Trial EEG

被引:73
作者
Qi, Feifei [1 ]
Li, Yuanqing [1 ]
Wu, Wei [1 ]
机构
[1] S China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Brain-computer interface (BCI); common spatial patterns (CSPs); electroencephalogram (EEG); Fisher linear discriminant analysis (FLDA); spatio-temporal filtering; SPARSE SPATIAL FILTER; MOTOR IMAGERY; FEATURE-EXTRACTION; PATTERNS; OPTIMIZATION; BANK;
D O I
10.1109/TNNLS.2015.2402694
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning optimal spatio-temporal filters is a key to feature extraction for single-trial electroencephalogram (EEG) classification. The challenges are controlling the complexity of the learning algorithm so as to alleviate the curse of dimensionality and attaining computational efficiency to facilitate online applications, e.g., brain-computer interfaces (BCIs). To tackle these barriers, this paper presents a novel algorithm, termed regularized spatio-temporal filtering and classification (RSTFC), for single-trial EEG classification. RSTFC consists of two modules. In the feature extraction module, an l(2)-regularized algorithm is developed for supervised spatio-temporal filtering of the EEG signals. Unlike the existing supervised spatio-temporal filter optimization algorithms, the developed algorithm can simultaneously optimize spatial and high-order temporal filters in an eigenvalue decomposition framework and thus be implemented highly efficiently. In the classification module, a convex optimization algorithm for sparse Fisher linear discriminant analysis is proposed for simultaneous feature selection and classification of the typically high-dimensional spatio-temporally filtered signals. The effectiveness of RSTFC is demonstrated by comparing it with several state-of-the-arts methods on three brain-computer interface (BCI) competition data sets collected from 17 subjects. Results indicate that RSTFC yields significantly higher classification accuracies than the competing methods. This paper also discusses the advantage of optimizing channel-specific temporal filters over optimizing a temporal filter common to all channels.
引用
收藏
页码:3070 / 3082
页数:13
相关论文
共 33 条
[1]  
Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
[2]  
[Anonymous], 2002, THESIS
[3]   Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI [J].
Arvaneh, Mahnaz ;
Guan, Cuntai ;
Ang, Kai Keng ;
Quek, Chai .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (06) :1865-1873
[4]   A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals [J].
Bashashati, Ali ;
Fatourechi, Mehrdad ;
Ward, Rabab K. ;
Birch, Gary E. .
JOURNAL OF NEURAL ENGINEERING, 2007, 4 (02) :R32-R57
[5]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[6]   Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms [J].
Dornhege, G ;
Blankertz, B ;
Curio, G ;
Müller, KR .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :993-1002
[7]   Combined optimization of spatial and temporal filters for improving brain-computer interfacing [J].
Dornhege, Guido ;
Blankertz, Benjamin ;
Krauledat, Matthias ;
Losch, Florian ;
Curio, Gabriel ;
Mueller, Klaus-Robert .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (11) :2274-2281
[8]  
Farquhar J., 2006, Proc. 3rd Int. BCI Workshop Training Course, P14
[9]  
Goksu F, 2011, INT CONF ACOUST SPEE, P533
[10]  
Grant M., 2006, CVX: Matlab software for disciplined convex programming