Critical challenges and progress of solid garnet electrolytes for all-solid-state batteries

被引:37
作者
Shen, X. [1 ]
Zhang, Q. [1 ,2 ]
Ning, T. [1 ]
Liu, T. [1 ]
Luo, Y. [1 ]
He, X. [1 ]
Luo, Z. [1 ]
Lu, A. [1 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Jiangxi Univ Sci Technol, Key Lab Power Batteries & Relat Mat, Ganzhou 341000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state batteries; solid garnet electrolyte; interface engineering; lithium dendrites; 3D garnet electrolytes; LI-ION CONDUCTIVITY; LI7LA3ZR2O12 CERAMIC ELECTROLYTES; COMPOSITE POLYMER ELECTROLYTES; TA-DOPED LI7LA3ZR2O12; ULTRALOW INTERFACIAL RESISTANCE; LITHIUM METAL ANODES; CUBIC LI7LA3ZR2O12; ELECTROCHEMICAL PERFORMANCE; STRUCTURAL STABILITY; CHEMICAL-STABILITY;
D O I
10.1016/j.mtchem.2020.100368
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Significant safety problems and poor cyclic stability of conventional lithium-ion batteries, which based on organic liquid electrolytes, hinder their practical application, while all-solid-state batteries (ASSBs) are considered the most promising candidates to replace traditional lithium-ion batteries. As a critical component of ASSBs, solid-state electrolytes play an essential role in ion transport properties and stability. At present, the solid garnet electrolyte is considered as one of the most promising electrolytes because of its excellent performance. However, it still faces many challenges in ionic conductivity, air stability, electrode/electrolyte interface, and lithium dendrites. Therefore, this review is concerned about the up-to-date progress and challenges which will greatly influence the large-scale application of solid garnet electrolytes. Firstly, various ways to improve the ionic conductivity of solid garnet electrolytes are comprehensively summarized. Then, the stability of solid garnet electrolytes in the air is carefully discussed. Secondly, the latest progress in interface engineering between anode/cathode and solid garnet electrolytes treated by different methods is reported. The formation mechanism and influencing factors of lithium dendrites in the solid garnet electrolyte are systematically focused on. Finally, the development and innovation of composite solid garnet electrolytes and 3D garnet electrolytes are summarized in detail. Some important characterization techniques for studying the aforementioned problems are also summarized. Based on the current development of solid garnet electrolytes and solid-state batteries, further challenges and perspectives are presented. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:36
相关论文
共 290 条
[1]   Dual-Doped Cubic Garnet Solid Electrolytes with Superior Air Stability [J].
Abrha, Ljalem Hadush ;
Hagos, Tesfaye Teka ;
Nikodimos, Yosef ;
Bezabh, Hailemariam Kassa ;
Berhe, Gebregziabher Brhane ;
Hagos, Teklay Mezgebe ;
Huang, Chen-Jui ;
Tegegne, Wodaje Addis ;
Jiang, Shi-Kai ;
Weldeyohannes, Haile Hisho ;
Wu, She-Huang ;
Su, Wei-Nien ;
Hwang, Bing Joe .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (23) :25709-25717
[2]   Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal [J].
Aguesse, Frederic ;
Manalastas, William ;
Buannic, Lucienne ;
Lopez del Amo, Juan Miguel ;
Singh, Gurpreet ;
Llordes, Anna ;
Kilner, John .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) :3808-3816
[3]   Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification [J].
Alexander, George V. ;
Rosero-Navarro, Nataly Carolina ;
Miura, Akira ;
Tadanaga, Kiyoharu ;
Murugan, Ramaswamy .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (42) :21018-21028
[4]   Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 [J].
Allen, J. L. ;
Wolfenstine, J. ;
Rangasamy, E. ;
Sakamoto, J. .
JOURNAL OF POWER SOURCES, 2012, 206 :315-319
[5]   IONIC-CONDUCTIVITY IN LI3N SINGLE-CRYSTALS [J].
ALPEN, UV ;
RABENAU, A ;
TALAT, GH .
APPLIED PHYSICS LETTERS, 1977, 30 (12) :621-623
[6]  
[Anonymous], SMALL
[7]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[8]   Synthesis of chabazite and merlinoite for Cs+ adsorption and immobilization properties by heat-treatment [J].
Aono, Hiromichi ;
Takeuchi, Yuta ;
Itagaki, Yoshiteru ;
Johan, Erni .
SOLID STATE SCIENCES, 2020, 100
[9]   High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5) [J].
Arbi, K. ;
Bucheli, W. ;
Jimenez, R. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) :1477-1484
[10]   Neutron powder diffraction study of tetragonal Li7La3Hf2O12 with the garnet-related type structure [J].
Awaka, Junji ;
Kijima, Norihito ;
Kataoka, Kunimitsu ;
Hayakawa, Hiroshi ;
Ohshima, Ken-ichi ;
Akimoto, Junji .
JOURNAL OF SOLID STATE CHEMISTRY, 2010, 183 (01) :180-185