Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection

被引:43
作者
Li, W. Q. [1 ,2 ]
Wang, G. [1 ,2 ]
Zhang, X. N. [1 ,2 ]
Geng, H. P. [1 ,2 ]
Shen, J. L. [1 ,2 ]
Wang, L. S. [1 ,2 ]
Zhao, J. [1 ,2 ]
Xu, L. F. [1 ,2 ]
Zhang, L. J. [1 ,2 ]
Wu, Y. Q. [1 ,2 ]
Tai, R. Z. [1 ,2 ]
Chen, G. [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, CAS Key Lab Interfacial Phys & Technol, Shanghai 201204, Peoples R China
[3] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
ENHANCED RAMAN-SCATTERING; SILVER NANOPARTICLES; MEDIATED SYNTHESIS; SPECTROSCOPY; NANOCUBES; ARRAYS; EXCITATION; MOLECULES; NOBLE; FIELD;
D O I
10.1039/c5nr03140k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we present an in-depth and comprehensive study of the effect of the geometry and morphology of nanoarray (NA) substrates on their surface-enhanced Raman scattering (SERS) performance. The high-quality SERS-active NA substrates of various unit shapes and pitches are assembled through electron beam lithography and fabricated by electron beam physical vapor deposition. Good agreement is found on comparing the Raman scattering results with the integrals of the fourth power of local electric fields from the three-dimensional numerical simulations. A novel type of hybrid NA substrate composed of disordered nanoparticles and a periodic NA is fabricated and characterized. The morphology of NAs has little influence on the SERS performance of hybrid NA substrates and they perform better than both their counterparts pure NA and disordered nanoparticle substrates.
引用
收藏
页码:15487 / 15494
页数:8
相关论文
共 53 条
[1]   Effects of the Excitation Wavelength on the SERS Spectrum [J].
Alvarez-Puebla, Ramon A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (07) :857-866
[2]   SERS-Based Diagnosis and Biodetection [J].
Alvarez-Puebla, Ramon A. ;
Liz-Marzan, Luis M. .
SMALL, 2010, 6 (05) :604-610
[3]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[4]   Rapid, quantitative analysis of ppm/ppb nicotine using surface-enhanced Raman scattering from polymer-encapsulated Ag nanoparticles (gel-colls) [J].
Bell, SEJ ;
Sirimuthu, NMS .
ANALYST, 2004, 129 (11) :1032-1036
[5]   Raman spectroscopy for the in situ identification of cocaine and selected adulterants [J].
Carter, JC ;
Brewer, WE ;
Angel, SM .
APPLIED SPECTROSCOPY, 2000, 54 (12) :1876-1881
[6]   ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study [J].
Chan, Yu Fei ;
Xu, Hai Jun ;
Cao, Lei ;
Tang, Ying ;
Li, De Yao ;
Sun, Xiao Ming .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (03)
[7]   The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates [J].
Driskell, Jeremy D. ;
Shanmukh, Saratchandra ;
Liu, Yongjun ;
Chaney, Stephen B. ;
Tang, X. -J. ;
Zhao, Y. -P. ;
Dluhy, Richard A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (04) :895-901
[8]   Re-radiation Enhancement in Polarized Surface-Enhanced Resonant Raman Scattering of Randomly Oriented Molecules on Self-Organized Gold Nanowires [J].
Fazio, Barbara ;
D'Andrea, Cristiano ;
Bonaccorso, Francesco ;
Irrera, Alessia ;
Calogero, Giuseppe ;
Vasi, Cirino ;
Gucciardi, Pietro Giuseppe ;
Allegrini, Maria ;
Toma, Andrea ;
Chiappe, Daniele ;
Martella, Christian ;
de Mongeot, Francesco Buatier .
ACS NANO, 2011, 5 (07) :5945-5956
[9]   RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE [J].
FLEISCHMANN, M ;
HENDRA, PJ ;
MCQUILLAN, AJ .
CHEMICAL PHYSICS LETTERS, 1974, 26 (02) :163-166
[10]   Collective theory for surface enhanced Raman scattering [J].
GarciaVidal, FJ ;
Pendry, JB .
PHYSICAL REVIEW LETTERS, 1996, 77 (06) :1163-1166