INTEGRAL SOLUTIONS OF AN INFINITE ELLIPTIC CONE x2 = 9y2

被引:0
作者
Somanath, Manju [1 ]
Raja, K. [1 ]
Kannan, J. [2 ]
Akila, A. [2 ]
机构
[1] Natl Coll, PG & Res Dept Math, Trichy, India
[2] AyyaNadar Janaki Ammal Coll Autonomous, Dept Math, Sivakasi, India
来源
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES | 2020年 / 19卷 / 11期
关键词
infinite elliptic cone; Diophantine equation; integral solution; Pell's equation; linear transformation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we investigate the ternary Diophantine equation in place of inestimable elliptic cone specified by x(2) = 9 y(2) + 11 z(2) is analyzed for its non-zero distinctive integer points lying on it. Barely some dissimilar patterns of integer points gratifying the cone in deliberation are obtained.
引用
收藏
页码:1119 / 1124
页数:6
相关论文
共 10 条
[1]  
[Anonymous], 2002, INTRO DIOPHANTINE EQ
[2]  
Batta Bibhotibhusan, 1983, HIST HINDU MATH
[3]  
Boyer C., 1968, A History of Mathematics
[4]  
Davenport H., 1999, HIGHER ARITHMETIC
[5]  
Dickson L.E., 1952, HIST THEORY NUMBERS, V2
[6]  
Gopalan M. A., 2014, B MATH STAT RES, V2, P1
[7]  
Gopalan M. A., 2016, INT J RES EMERGING S, V3, P644
[8]  
Matteson M.D. James, 1888, COLLECTION DIOPHANTI
[9]  
Stilwell John, 2004, MATH ITS HIST
[10]  
Weil Andre., 1987, Number Theory: An approach through history