Genome-scale Modeling of Metabolism and Macromolecular Expression and Their Applications

被引:9
作者
Dahal, Sanjeev [1 ]
Zhao, Jiao [1 ]
Yang, Laurence [1 ]
机构
[1] Queens Univ, Dept Chem Engn, Kingston, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
genome-scale models; GEMs; ME-models; ESCHERICHIA-COLI; GENE-EXPRESSION; RECONSTRUCTION; NETWORK; INTEGRATION; GROWTH; ALLOCATION; ENABLES; DESIGN; MG1655;
D O I
10.1007/s12257-020-0061-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome-scale models (GEMs) are predictive tools to study genotype-phenotype relationships in biological systems. Initially, genome-scale models were used for predicting the metabolic state of the organism given the nutrient condition and genetic perturbation (if any). Such metabolic (M-) models have been successfully developed for diverse organisms in both prokaryotes and eukaryotes. In this review, we focus our attention to genome-scale models of metabolism and macromolecular expression or ME-models. ME-models expand the scope of M-models by incorporating macromolecular biosynthesis pathways of transcription and translation. ME-models can predict the proteome investment in metabolism under any given condition. Therefore, ME-models significantly improve the quantitative prediction of gene expression. Unlike M-models that can predict biological properties in only nutrient-limited condition, ME-models can do so in both nutrient- and proteome-limited conditions. There are a few limitations of ME-models, many of which have now been largely overcome, making them more attractive to the broader research community. We finally discuss the applications of GEMs in general, and how they have been applied for biomedical, bioengineering and bioremediation purposes.
引用
收藏
页码:931 / 943
页数:13
相关论文
共 102 条
[1]   Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT [J].
Agren, Rasmus ;
Bordel, Sergio ;
Mardinoglu, Adil ;
Pornputtapong, Natapol ;
Nookaew, Intawat ;
Nielsen, Jens .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (05)
[2]   Manually curated genome-scale reconstruction of the metabolic network of Bacillus megaterium DSM319 [J].
Aminian-Dehkordi, Javad ;
Mousavi, Seyyed Mohammad ;
Jafari, Arezou ;
Mijakovic, Ivan ;
Marashi, Sayed-Amir .
SCIENTIFIC REPORTS, 2019, 9 (1)
[3]   Adaptive evolution reveals a tradeoff between growth rate and oxidative stress during naphthoquinone-based aerobic respiration [J].
Anand, Amitesh ;
Chen, Ke ;
Yang, Laurence ;
Sastry, Anand V. ;
Olson, Connor A. ;
Poudel, Saugat ;
Seif, Yara ;
Hefner, Ying ;
Phaneuf, Patrick V. ;
Xu, Sibei ;
Szubin, Richard ;
Feist, Adam M. ;
Palsson, Bernhard O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (50) :25287-25292
[4]   redGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models [J].
Ataman, Meric ;
Gardiol, Daniel F. Hernandez ;
Fengos, Georgios ;
Hatzimanikatis, Vassily .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (07)
[5]   The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities [J].
Baldini, Federico ;
Heinken, Almut ;
Heirendt, Laurent ;
Magnusdottir, Stefania ;
Fleming, Ronan M. T. ;
Thiele, Ines .
BIOINFORMATICS, 2019, 35 (13) :2332-2334
[6]   A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate [J].
Barenholz, Uri ;
Keren, Leeat ;
Segal, Eran ;
Milo, Ron .
PLOS ONE, 2016, 11 (04)
[7]   From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota [J].
Bauer, Eugen ;
Thiele, Ines .
MSYSTEMS, 2018, 3 (03)
[8]   Automatic construction of metabolic models with enzyme constraints [J].
Bekiaris, Pavlos Stephanos ;
Klamt, Steffen .
BMC BIOINFORMATICS, 2020, 21 (01)
[9]   Predicting gastrointestinal drug effects using contextualized metabolic models [J].
Ben Guebila, Marouen ;
Thiele, Ines .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (06)
[10]   A predictive model for transcriptional control of physiology in a free living cell [J].
Bonneau, Richard ;
Facciotti, Marc T. ;
Reiss, David J. ;
Schmid, Amy K. ;
Pan, Min ;
Kaur, Amardeep ;
Thorsson, Vesteinn ;
Shannon, Paul ;
Johnson, Michael H. ;
Bare, J. Christopher ;
Longabaugh, William ;
Vuthoori, Madhavi ;
Whitehead, Kenia ;
Madar, Aviv ;
Suzuki, Lena ;
Mori, Tetsuya ;
Chang, Dong-Eun ;
DiRuggiero, Jocelyne ;
Johnson, Carl H. ;
Hood, Leroy ;
Baliga, Nitin S. .
CELL, 2007, 131 (07) :1354-1365