Circular-shaped microfluidic device to study the effect of shear stress on cellular orientation

被引:6
作者
Park, Da Yeon [1 ]
Kim, Tae Hyeon [2 ]
Lee, Jong Min [2 ]
Ahrberg, Christian D. [3 ]
Chung, Bong Geun [2 ]
机构
[1] Sogang Univ, Dept Biomed Engn, Seoul, South Korea
[2] Sogang Univ, Dept Mech Engn, 35 Baekbeom Ro, Seoul 121742, South Korea
[3] Sogang Univ, Res Ctr, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Cellular orientation; Circular-shaped microfluidic device; Shear stress; ENDOTHELIAL-CELLS; BLOOD-VESSELS; SMOOTH-MUSCLE; FLOW; SYSTEM; CHAMBERS; CANCER;
D O I
10.1002/elps.201800109
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the effects of shear stress on mammalian cells is a crucial factor for understanding a number of biological processes and diseases. Here, we show the development of a circular-shaped microfluidic device for the facile generation of shear stress gradients. With this microfluidic device, the effect of shear stress on orientation of human umbilical vein endothelial cells was studied. This microfluidic device, which enables to control the alignment of human umbilical vein endothelial cells within a microchannel, can be a valuable tool to mimic blood vessels.
引用
收藏
页码:1816 / 1820
页数:5
相关论文
共 30 条
[1]   Dynamic shear stress in parallel-plate flow chambers [J].
Bacabac, RG ;
Smit, TH ;
Cowin, SC ;
Van Loon, JJWA ;
Nieuwstadt, FTM ;
Heethaar, R ;
Klein-Nulend, J .
JOURNAL OF BIOMECHANICS, 2005, 38 (01) :159-167
[2]   Experimental Approaches to Study Endothelial Responses to Shear Stress [J].
Bowden, Neil ;
Bryan, Matthew T. ;
Duckles, Hayley ;
Feng, Shuang ;
Hsiao, Sarah ;
Kim, Hyejeong Rosemary ;
Mahmoud, Marwa ;
Moers, Britta ;
Serbanovic-Canic, Jovana ;
Xanthis, Ioannis ;
Ridger, Victoria C. ;
Evans, Paul C. .
ANTIOXIDANTS & REDOX SIGNALING, 2016, 25 (07) :389-400
[3]   Microfluidics for research and applications in oncology [J].
Chaudhuri, Parthiv Kant ;
Warkiani, Majid Ebrahimi ;
Jing, Tengyang ;
Kenry ;
Lim, Chwee Teck .
ANALYST, 2016, 141 (02) :504-524
[4]   Augmented stress-responsive characteristics of cell lines in narrow confinements [J].
Das, Tamal ;
Maitia, Tapas K. ;
Chakraborty, Suman .
INTEGRATIVE BIOLOGY, 2011, 3 (06) :684-695
[5]   An advanced cone-and-plate reactor for the in vitro-application of shear stress on adherent cells [J].
Dreyer, Lutz ;
Krolitzki, Benjamin ;
Autschbach, Ruediger ;
Vogt, Peter ;
Welte, Tobias ;
Ngezahayo, Anaclet ;
Glasmacher, Birgit .
CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 2011, 49 (1-4) :391-397
[6]   Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells [J].
Fan, Rong ;
Emery, Travis ;
Zhang, Yongguo ;
Xia, Yuxuan ;
Sun, Jun ;
Wan, Jiandi .
SCIENTIFIC REPORTS, 2016, 6
[7]   Biological and engineering design considerations for vascular tissue engineered blood vessels (TEBVs) [J].
Fernandez, Cristina E. ;
Achneck, Hardean E. ;
Reichert, William M. ;
Truskey, George A. .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2014, 3 :83-90
[8]   Modulation of functional responses of endothelial cells linked to angiogenesis and inflammation by shear stress: Differential effects of the mechanotransducer CD31 [J].
Glen, Katie ;
Luu, N. Thin ;
Ross, Ewan ;
Buckley, Chris D. ;
Rainger, G. Ed ;
Egginton, Stuart ;
Nash, Gerard B. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2012, 227 (06) :2710-2721
[9]   Mean wall-shear stress measurements using the micro-pillar shear-stress sensor MPS3 [J].
Grosse, S. ;
Schroeder, W. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2008, 19 (01)
[10]   The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft [J].
Inoguchi, Hiroyuki ;
Tanaka, Takashi ;
Maehara, Yoshihiko ;
Matsuda, Takehisa .
BIOMATERIALS, 2007, 28 (03) :486-495