Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance

被引:104
作者
Chen, Shizhu [1 ]
Yang, Keni [2 ]
Tuguntaev, Ruslan G. [2 ]
Mozhi, Anbu [2 ]
Zhang, Jinchao [1 ]
Wang, Paul C. [3 ,4 ]
Liang, Xing-Jie [2 ]
机构
[1] Hebei Univ, Coll Chem & Environm Sci, Key Lab Med Chem & Mol Diag, Key Lab Chem Biol Hebei Prov,Minist Educ, Baoding, Peoples R China
[2] Natl Ctr Nanosci & Technol China, CAS Key Lab Nanomat Bioeffects & Nanosafety, Beijing, Peoples R China
[3] Fu Jen Catholic Univ, Taipei, Taiwan
[4] Howard Univ, Dept Radiol, Lab Mol Imaging, Wa, DC USA
关键词
Poly(ethylene glycol); Amphiphilic nanomaterials; Tumor targeting; Cancer microenvironment; Multidrug resistance; MULTIFUNCTIONAL POLYMERIC MICELLES; MESOPOROUS SILICA NANOPARTICLES; MULTIDRUG-RESISTANCE MODULATOR; BLOCK-COPOLYMER MICELLES; DRUG-DELIVERY; P-GLYCOPROTEIN; CO-DELIVERY; BREAST-CANCER; SOLID STRESS; IN-VITRO;
D O I
10.1016/j.nano.2015.10.020
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multidrug resistance is one of the biggest obstacles in the treatment of cancer. Recent research studies highlight that tumor microenvironment plays a predominant role in tumor cell proliferation, metastasis, and drug resistance. Hence, targeting the tumor microenvironment provides a novel strategy for the evolution of cancer nanomedicine. The blooming knowledge about the tumor microenvironment merging with the design of PEG-based amphiphilic nanoparticles can provide an effective and promising platform to address the multidrug resistant tumor cells. This review describes the characteristic features of tumor microenvironment and their targeting mechanisms with the aid of PEG-based amphiphilic nanoparticles for the development of newer drug delivery systems to overcome multidrug resistance in cancer cells. From the Clinical Editor: Cancer is a leading cause of death worldwide. Many cancers develop multidrug resistance towards chemotherapeutic agents with time and strategies are urgently needed to combat against this. In this review article, the authors discuss the current capabilities of using nanomedicine to target the tumor microenvironments, which would provide new insight to the development of novel delivery systems for the future. (c) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:269 / 286
页数:18
相关论文
共 192 条
[101]   Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy [J].
Min, Kyung Hyun ;
Kim, Jong-Ho ;
Bae, Sang Mun ;
Shin, Hyeri ;
Kim, Min Sang ;
Park, Sangjin ;
Lee, Hyejung ;
Park, Rang-Woon ;
Kim, In-San ;
Kim, Kwangmeyung ;
Kwon, Ick Chan ;
Jeong, Seo Young ;
Lee, Doo Sung .
JOURNAL OF CONTROLLED RELEASE, 2010, 144 (02) :259-266
[102]   Enhancing the anticancer efficacy of camptothecin using biotinylated poly(ethyleneglycol) conjugates in sensitive and multidrug-resistant human ovarian carcinoma cells [J].
Minko, T ;
Paranjpe, PV ;
Qiu, B ;
Lalloo, A ;
Won, R ;
Stein, S ;
Sinko, PJ .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2002, 50 (02) :143-150
[103]   E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells [J].
Mitchell, Michael J. ;
Chen, Christina S. ;
Ponmudi, Varun ;
Hughes, Andrew D. ;
King, Michael R. .
JOURNAL OF CONTROLLED RELEASE, 2012, 160 (03) :609-617
[104]   Cyclic RGD-Linked Polymeric Micelles for Targeted Delivery of Platinum Anticancer Drugs to Glioblastoma through the Blood-Brain Tumor Barrier [J].
Miura, Yutaka ;
Takenaka, Tomoya ;
Toh, Kazuko ;
Wu, Shourong ;
Nishihara, Hiroshi ;
Kano, Mitsunobu R. ;
Ino, Yasushi ;
Nomoto, Takahiro ;
Matsumoto, Yu ;
Koyama, Hiroyuki ;
Cabral, Horacio ;
Nishiyama, Nobuhiro ;
Kataoka, Kazunori .
ACS NANO, 2013, 7 (10) :8583-8592
[105]   Transferrin and transferrin receptor function in brain barrier systems [J].
Moos, T ;
Morgan, EH .
CELLULAR AND MOLECULAR NEUROBIOLOGY, 2000, 20 (01) :77-95
[106]   The effects of mixed MPEG-PLA/Pluronic® copolymer micelles on the bioavailability and multidrug resistance of docetaxel [J].
Mu, Chao-Feng ;
Balakrishnan, Prabagar ;
Cui, Fu-De ;
Yin, Yong-Mei ;
Lee, Yong-Bok ;
Choi, Han-Gon ;
Yong, Chul Soon ;
Chung, Suk-Jae ;
Shim, Chang-Koo ;
Kim, Dae-Duk .
BIOMATERIALS, 2010, 31 (08) :2371-2379
[107]   Irreversible temperature-responsive formation of high-strength hydrogel from an enantiomeric mixture of starburst triblock copolymers consisting of 8-arm PEG and PLLA or PDLA [J].
Nagahama, Koji ;
Fujiura, Kanae ;
Enami, Shunsuke ;
Ouchi, Tatsuro ;
Ohya, Yuichi .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2008, 46 (18) :6317-6332
[108]  
Nair MG, 2000, J CANCER EDUC, V15, P19
[109]  
Nasongkla N., 2004, Angew Chem Int Ed, V116, P6483
[110]   Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems [J].
Nasongkla, Norased ;
Bey, Erik ;
Ren, Jimin ;
Ai, Hua ;
Khemtong, Chalermchai ;
Guthi, Jagadeesh Setti ;
Chin, Shook-Fong ;
Sherry, A. Dean ;
Boothman, David A. ;
Gao, Jinming .
NANO LETTERS, 2006, 6 (11) :2427-2430