Existence of positive almost periodic solutions to the hematopoiesis model

被引:19
作者
Diagana, Toka [1 ]
Zhou, Hui [2 ]
机构
[1] Howard Univ, Dept Math, Washington, DC 20059 USA
[2] Hefei Normal Univ, Sch Math & Stat, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Hematopoiesis model; Almost periodic; Fixed-point theorem in a cone; ATTRACTIVITY; OSCILLATION;
D O I
10.1016/j.amc.2015.10.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study and obtain the existence of a positive almost periodic solution to the nonlinear differential equation with delays that describes the so-called hematopoiesis model. The main tool utilized to establish our existence result consists of the fixed-point theorem in a cone. Two examples are given at the end of the paper to illustrate our main result. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:644 / 648
页数:5
相关论文
共 16 条
[1]   Almost periodic solutions of neutral functional differential equations [J].
Abbas, S. ;
Bahuguna, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (11) :2593-2601
[2]  
Alzabut J. O., 2009, BOUND VALUE PROBL, V1193, P429
[3]   Permanence, oscillation and attractivity of the discrete hematopoiesis model with variable coefficients [J].
Braverman, E. ;
Saker, S. H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (10) :2955-2965
[4]   Almost periodic solutions of neutral functional differential equations [J].
Chen, Xiaoxing ;
Lin, Faxing .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) :1182-1189
[5]   Weighted pseudo almost periodic solutions for a class of discrete hematopoiesis model [J].
Ding, Hui-Sheng ;
N'Guerekata, Gaston M. ;
Nieto, Juan J. .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02) :427-443
[6]   Existence of positive almost automorphic solutions to nonlinear delay integral equations [J].
Ding, Hui-Sheng ;
Xiao, Ti-Jun ;
Liang, Jin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) :2216-2231
[7]   Global attractivity of almost-periodic solution in a model of hematopoiesis with feedback control [J].
Hong, Penghua ;
Weng, Peixuan .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) :2267-2285
[8]   New results on the positive almost periodic solutions for a model of hematopoiesis [J].
Liu, Bingwen .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 :252-264
[9]   Existence and global attractivity of unique positive periodic solution for a model of hernatopoiesis [J].
Liu, Guirong ;
Yan, Jurang ;
Zhang, Fengqin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) :157-171
[10]   OSCILLATION AND CHAOS IN PHYSIOLOGICAL CONTROL-SYSTEMS [J].
MACKEY, MC ;
GLASS, L .
SCIENCE, 1977, 197 (4300) :287-288