Radar HRRP Target Recognition with Recurrent Convolutional Neural Networks

被引:0
作者
Shen, Mengqi [1 ]
Chen, Bo [1 ]
机构
[1] Xidian Univ, Natl Lab Radar Signal Proc, Xian, Peoples R China
来源
INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING | 2018年 / 11266卷
关键词
Radar automatic target recognition (RATR); High-resolution range profile (HRRP); Convolutional neural network (CNN); Recurrent neural network (RNN); CLASSIFICATION; MODEL;
D O I
10.1007/978-3-030-02698-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional radar automatic target recognition (RATR) methods using High-Resolution Range Profile (HRRP) sequences require carefully designed feature extraction techniques and plenty of HRRP waveforms, which result in insufficient recognition rate and limit in realtime recognition. To address these issues a modified end-to-end architecture consisting of a convolutional neural network (CNN) followed by a recurrent neural network (RNN) is proposed. In this model the local features of HRRPs extracted by a CNN are passed to a RNN, which avoids manual feature extraction and takes advantage of its shared parameters mechanism which enables single HRRP recognition in real-time. The effectiveness of this model is shown in this paper with numerical results.
引用
收藏
页码:243 / 251
页数:9
相关论文
共 34 条
[11]   Bayesian Spatiotemporal Multitask Learning for Radar HRRP Target Recognition [J].
Du, Lan ;
Wang, Penghui ;
Liu, Hongwei ;
Pan, Mian ;
Chen, Feng ;
Bao, Zheng .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (07) :3182-3196
[12]   SPATIOTEMPORAL PATTERN-RECOGNITION USING HIDDEN MARKOV-MODELS [J].
FIELDING, KH ;
RUCK, DW .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1995, 31 (04) :1292-1300
[13]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
[14]  
Hudson S., 2002, IEEE T AERO ELEC SYS, V29, P741
[15]  
Ioffe Sergey, 2015, P MACHINE LEARNING R, V37, P448, DOI [DOI 10.48550/ARXIV.1502.03167, DOI 10.5555/3015118.3045167]
[16]   Adaptive multiaspect target classification and detection with hidden Markov models [J].
Ji, SH ;
Liao, XJ ;
Carin, L .
IEEE SENSORS JOURNAL, 2005, 5 (05) :1035-1042
[17]   Recognizing occluded objects in SAR images [J].
Jones, G ;
Bhanu, B .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2001, 37 (01) :316-328
[18]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[19]   USING RANGE PROFILES AS FEATURE VECTORS TO IDENTIFY AEROSPACE OBJECTS [J].
LI, HJ ;
YANG, SH .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (03) :261-268
[20]   On the aspect sensitivity of high resolution range profiles and its reduction methods [J].
Liao, XJ ;
Bao, Z ;
Xing, MD .
RECORD OF THE IEEE 2000 INTERNATIONAL RADAR CONFERENCE, 2000, :310-315