Exponentially harmonic maps, Morse index and Liouville type theorems

被引:0
作者
Chiang, Yuan-Jen [1 ]
机构
[1] Univ Mary Washington, Dept Math, Fredericksburg, VA 22401 USA
关键词
Exponentially harmonic map; Morse index; Liouville type theorems; EXISTENCE;
D O I
10.1007/s40879-019-00362-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a result on the Morse index of an exponentially harmonic map from a Riemannian manifold into the unit n-sphere. Next, we prove a Liouville type 1 theorem for exponentially harmonic maps between two Riemannian manifolds. Finally, let (M, g0) be a complete Riemannian manifold with a pole x0 and ( N, h) a Riemannian manifold, under certain conditions we establish a Liouville type 2 theorem for exponentially harmonic maps f : ( M,.2g0). N, 0 <.. C 8 (M).
引用
收藏
页码:1388 / 1402
页数:15
相关论文
共 25 条
[1]   Stress-energy tensors and the Lichnerowicz Laplacian [J].
Baird, Paul .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (10) :1329-1342
[2]   The second variation formula for exponentially harmonic maps [J].
Cheung, LF ;
Leung, PF .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (03) :509-514
[3]  
Chiang Y-J., 2013, DEV HARMONIC MAPS WA, DOI [10.1007/978-3-0348-0534-6, DOI 10.1007/978-3-0348-0534-6]
[4]   Exponential wave maps [J].
Chiang, Yuan-Jen ;
Yang, Yi-Hu .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (12) :2521-2532
[5]   Exponentially harmonic maps between Finsler manifolds [J].
Chiang, Yuan-Jen .
MANUSCRIPTA MATHEMATICA, 2018, 157 (1-2) :101-119
[6]   Exponentially harmonic maps, exponential stress energy and stability [J].
Chiang, Yuan-Jen .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (06)
[7]   Exponentially harmonic maps and their properties [J].
Chiang, Yuan-Jen .
MATHEMATISCHE NACHRICHTEN, 2015, 288 (17-18) :1970-1980
[8]   Transversal wave maps and transversal exponential wave maps [J].
Chiang Y.-J. ;
Wolak R.A. .
Journal of Geometry, 2013, 104 (3) :443-459
[9]  
[江苑珍 Chiang Yuanjen], 2015, [数学学报, Acta Mathematica Sinica], V58, P131
[10]   On Vanishing Theorems for Vector Bundle Valued p-Forms and their Applications [J].
Dong, Yuxin ;
Wei, Shihshu Walter .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) :329-368