Statistical stopping criteria for automated screening in systematic reviews

被引:60
作者
Callaghan, Max W. [1 ,2 ,3 ]
Mueller-Hansen, Finn [1 ,3 ]
机构
[1] Mercator Res Inst Global Commons & Climate Change, EUREF Campus 19,Torgauer Str 12-15, D-10829 Berlin, Germany
[2] Univ Leeds, Priestley Int Ctr Climate, Leeds LS2 9JT, W Yorkshire, England
[3] Leibniz Assoc, Potsdam Inst Climate Impact Res PIK, POB 60 12 03, D-14412 Potsdam, Germany
关键词
Systematic review; Machine learning; Active learning; Stopping criteria; CONFIDENCE-INTERVALS; WORKLOAD;
D O I
10.1186/s13643-020-01521-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Active learning for systematic review screening promises to reduce the human effort required to identify relevant documents for a systematic review. Machines and humans work together, with humans providing training data, and the machine optimising the documents that the humans screen. This enables the identification of all relevant documents after viewing only a fraction of the total documents. However, current approaches lack robust stopping criteria, so that reviewers do not know when they have seen all or a certain proportion of relevant documents. This means that such systems are hard to implement in live reviews. This paper introduces a workflow with flexible statistical stopping criteria, which offer real work reductions on the basis of rejecting a hypothesis of having missed a given recall target with a given level of confidence. The stopping criteria are shown on test datasets to achieve a reliable level of recall, while still providing work reductions of on average 17%. Other methods proposed previously are shown to provide inconsistent recall and work reductions across datasets.
引用
收藏
页数:14
相关论文
共 22 条
[1]   Machine learning algorithms for systematic review: reducing workload in a preclinical review of animal studies and reducing human screening error [J].
Bannach-Brown, Alexandra ;
Przybyla, Piotr ;
Thomas, James ;
Rice, Andrew S. C. ;
Ananiadou, Sophia ;
Liao, Jing ;
Macleod, Malcolm Robert .
SYSTEMATIC REVIEWS, 2019, 8 (1)
[2]   A NOTE ON CONFIDENCE-INTERVALS FOR PROPORTIONS IN FINITE POPULATIONS [J].
BUONACCORSI, JP .
AMERICAN STATISTICIAN, 1987, 41 (03) :215-218
[3]   The COPD genetic association compendium: a comprehensive online database of COPD genetic associations [J].
Castaldi, Peter J. ;
Cho, Michael H. ;
Cohn, Matthew ;
Langerman, Fawn ;
Moran, Sienna ;
Tarragona, Nestor ;
Moukhachen, Hala ;
Venugopal, Radhika ;
Hasimja, Delvina ;
Kao, Esther ;
Wallace, Byron ;
Hersh, Craig P. ;
Bagade, Sachin ;
Bertram, Lars ;
Silverman, Edwin K. ;
Trikalinos, Thomas A. .
HUMAN MOLECULAR GENETICS, 2010, 19 (03) :526-534
[4]   Reducing workload in systematic review preparation using automated citation classification [J].
Cohen, AM ;
Hersh, WR ;
Peterson, K ;
Yen, PY .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2006, 13 (02) :206-219
[5]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[6]   A Study of an Automatic Stopping Strategy for Technologically Assisted Medical Reviews [J].
Di Nunzio, Giorgio Maria .
ADVANCES IN INFORMATION RETRIEVAL (ECIR 2018), 2018, 10772 :672-677
[7]   SWIFT-Active Screener: Accelerated document screening through active learning and integrated recall estimation [J].
Howard, Brian E. ;
Phillips, Jason ;
Tandon, Arpit ;
Maharana, Adyasha ;
Elmore, Rebecca ;
Mav, Deepak ;
Sedykh, Alex ;
Thayer, Kristina ;
Merrick, B. Alex ;
Walker, Vickie ;
Rooney, Andrew ;
Shah, Ruchir R. .
ENVIRONMENT INTERNATIONAL, 2020, 138
[8]  
Jonnalagadda Siddhartha, 2013, International Journal of Computational Biology and Drug Design, V6, P5, DOI 10.1504/IJCBDD.2013.052198
[9]  
Lefebvre C., 2020, Cochrane Handbook for Systematic Reviews of Interventions version 6.1
[10]   Toward systematic review automation: a practical guide to using machine learning tools in research synthesis [J].
Marshall, Iain J. ;
Wallace, Byron C. .
SYSTEMATIC REVIEWS, 2019, 8 (1)