Effects of manufacturing conditions and heating on properties of electrochemically produced magnetite nano-powders

被引:3
作者
Mamula-Tartalja, D. [1 ]
Vulicevic, Lj [2 ]
Radisavljevic, I. [3 ]
Mitric, M. [3 ]
Andric, V. [3 ]
Kuzmanovic, B. [3 ]
Medic, M. [3 ]
Ivanovic, N. [3 ]
机构
[1] Higher Educ Sch Profess Studies Informat & Commun, Belgrade 11000, Serbia
[2] Univ Kragujevac, Tech Fac Cacak, Cacak 32000, Serbia
[3] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade 11001, Serbia
关键词
Annealing; EC synthesis; Magnetite nanopowders; Structure; Properties; SINGLE-DOMAIN; ELECTRICAL-CONDUCTIVITY; VERWEY TRANSITION; OXIDATION; FE3O4; NANOPARTICLES; GOETHITE; HEMATITE; MAGNETIZATION; GAMMA-FE2O3;
D O I
10.1016/j.ceramint.2013.09.077
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrochemical (EC) synthesis of magnetite (Fe3O4) nano-powders of specific characteristics is investigated in the range of current densities of J=200-1000 mA/dm(2), and temperatures of T=295-361 K. The obtained powders and their modification upon heating in air and argon atmosphere are examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmition electron microscopy (TEM), laser light scattering particle size distribution measurements, magnetic measurements by Faraday method and SQUID, and measurements of specific electrical resistivity. It has been established that structure, morphology, magnetic and electrical properties of the powders can be adjusted by using adequate EC synthesis conditions, and/or by their subsequent heating in the appropriate atmosphere. The temperature induced magnetite reordering, the magnetite to maghemite (gamma-Fe2O3), and the maghemite to haematite (alpha-Fe2O3) phase transitions were examined, too. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:3517 / 3525
页数:9
相关论文
共 50 条
  • [1] [Anonymous], 2013, Physical Foundations of Materials Science, DOI DOI 10.1007/978-3-662-09291-0
  • [2] [Anonymous], 1996, The Iron Oxides
  • [3] BANFIELD JF, 1994, AM MINERAL, V79, P654
  • [4] Influence of grain size, oxygen stoichiometry, and synthesis conditions on the γ-Fe2O3 vacancies ordering and lattice parameters
    Belin, T
    Guigue-Millot, N
    Caillot, T
    Aymes, D
    Niepce, JC
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2002, 163 (02) : 459 - 465
  • [5] Berkovski B., 1996, Magnetic Fluids and Applications Handbook
  • [6] Bacterial aerobic synthesis of nanocrystalline magnetite
    Bharde, A
    Wani, A
    Shouche, Y
    Joy, PA
    Prasad, BLV
    Sastry, M
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (26) : 9326 - 9327
  • [7] Iron oxidation states in silicate glass fragments and glass inclusions with a XANES micro-probe
    Bonnin-Mosbah, M
    Simionovici, AS
    Métrich, N
    Duraud, JP
    Massare, D
    Dillmann, P
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2001, 288 (1-3) : 103 - 113
  • [8] The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications
    Boyer, Cyrille
    Whittaker, Michael R.
    Bulmus, Volga
    Liu, Jingquan
    Davis, Thomas P.
    [J]. NPG ASIA MATERIALS, 2010, 2 (01) : 23 - 30
  • [9] The role of volume effects in the Verwey transition in magnetite
    Brabers, JHVJ
    Walz, F
    Kronmuller, H
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (18) : 3679 - 3686
  • [10] Magnetite nanoparticles: Electrochemical synthesis and characterization
    Cabrera, L.
    Gutierrez, S.
    Menendez, N.
    Morales, M. P.
    Heffasti, P.
    [J]. ELECTROCHIMICA ACTA, 2008, 53 (08) : 3436 - 3441