Growth of deformation twins in room-temperature rolled nanocrystalline nickel

被引:20
作者
Zhang, X. Y. [1 ,2 ]
Wu, X. L. [3 ]
Zhu, A. W. [2 ]
机构
[1] Chongqing Univ, Sch Mat Sci & Engn, Chongqing 400030, Peoples R China
[2] Guangxi Univ, Phys Sci & Engn Technol Sch, Nanning 530004, Peoples R China
[3] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
关键词
dislocations; grain boundaries; nanostructured materials; nanotechnology; nickel; transmission electron microscopy; twin boundaries; twinning; MOLECULAR-DYNAMICS SIMULATION; AL; MECHANISM; METALS; SLIP; NI;
D O I
10.1063/1.3104858
中图分类号
O59 [应用物理学];
学科分类号
摘要
Deformation twinning has been observed in room-temperature rolled nanocrystalline Ni. The growth of the deformation twins via the emission of partial dislocations from a grain boundary has been examined in detail. Partial dislocations on neighboring slip planes may migrate for different distances and then remain in the grain interior, leading to the formation of a steplike twin boundary (TB). With continued twin growth, the TBs become gradually distorted and lose their coherent character due to accumulated high stresses. Moreover, we propose that microtwins may form near such TBs due to the emission of partial dislocations from the TB.
引用
收藏
页数:3
相关论文
共 15 条
[1]   Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries [J].
Cao, A. J. ;
Wei, Y. G. ;
Mao, Scott X. .
APPLIED PHYSICS LETTERS, 2007, 90 (15)
[2]   Deformation twinning in nanocrystalline aluminum [J].
Chen, MW ;
Ma, E ;
Hemker, KJ ;
Sheng, HW ;
Wang, YM ;
Cheng, XM .
SCIENCE, 2003, 300 (5623) :1275-1277
[3]   Deformation twins in nanocrystalline Al [J].
Liao, XZ ;
Zhou, F ;
Lavernia, EJ ;
He, DW ;
Zhu, YT .
APPLIED PHYSICS LETTERS, 2003, 83 (24) :5062-5064
[4]   Deformation mechanism in nanocrystalline Al: Partial dislocation slip [J].
Liao, XZ ;
Zhou, F ;
Lavernia, EJ ;
Srinivasan, SG ;
Baskes, MI ;
He, DW ;
Zhu, YT .
APPLIED PHYSICS LETTERS, 2003, 83 (04) :632-634
[5]   Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper [J].
Ma, E ;
Wang, YM ;
Lu, QH ;
Sui, ML ;
Lu, L ;
Lu, K .
APPLIED PHYSICS LETTERS, 2004, 85 (21) :4932-4934
[6]   Deformation twinning in nanocrystalline Pd [J].
Rösner, H ;
Markmann, J ;
Weissmüller, J .
PHILOSOPHICAL MAGAZINE LETTERS, 2004, 84 (05) :321-334
[7]   Stacking fault energies and slip in nanocrystalline metals [J].
Van Swygenhoven, H ;
Derlet, PM ;
Froseth, AG .
NATURE MATERIALS, 2004, 3 (06) :399-403
[8]   Deformation twinning during nanoindentation of nanocrystalline Ta [J].
Wang, YM ;
Hodge, AM ;
Biener, J ;
Hamza, AV ;
Barnes, DE ;
Liu, K ;
Nieh, TG .
APPLIED PHYSICS LETTERS, 2005, 86 (10) :1-3
[9]   Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni [J].
Wu, X ;
Zhu, YT ;
Chen, MW ;
Ma, E .
SCRIPTA MATERIALIA, 2006, 54 (09) :1685-1690
[10]   Accommodation of large plastic strains and defect accumulation in nanocrystalline Ni grains [J].
Wu, X. L. ;
Ma, E. .
JOURNAL OF MATERIALS RESEARCH, 2007, 22 (08) :2241-2253