Wave function statistics at the symplectic two-dimensional Anderson transition: Bulk properties

被引:33
|
作者
Mildenberger, A.
Evers, F.
机构
[1] Univ Karlsruhe, Fak Phys, D-76128 Karlsruhe, Germany
[2] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[3] Univ Karlsruhe, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
关键词
D O I
10.1103/PhysRevB.75.041303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The wave function statistics at the Anderson transition in a two-dimensional disordered electron gas with spin-orbit coupling is studied numerically. In addition to highly accurate exponents (alpha(0)=2.172 +/- 0.002,tau(2)=1.642 +/- 0.004), we report three qualitative results. (i) The anomalous dimensions are invariant under q ->(1-q) which is in agreement with a recent analytical prediction and supports the universality hypothesis. (ii) The multifractal spectrum is not parabolic and therefore differs from behavior suspected, e.g., for (integer) quantum Hall transitions in a fundamental way. (iii) The critical fixed point satisfies conformal invariance.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Anderson transition in three-dimensional disordered systems with symplectic symmetry
    Kawarabayashi, T
    Ohtsuki, T
    Slevin, K
    Ono, Y
    PHYSICAL REVIEW LETTERS, 1996, 77 (17) : 3593 - 3596
  • [22] Anderson transition in two-dimensional disordered lattices with long-range coupling
    Rodríguez, A
    Malyshev, VA
    Domínguez-Adame, F
    Lemaistre, JP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (28-30): : 3928 - 3931
  • [23] Local moments and magnetic order in the two-dimensional Anderson-Mott transition
    Pezzoli, Maria Elisabetta
    Becca, Federico
    Fabrizio, Michele
    Santoro, Giuseppe
    PHYSICAL REVIEW B, 2009, 79 (03)
  • [24] Complexity of two-dimensional quasimodes at the transition from weak scattering to Anderson localization
    Vanneste, C.
    Sebbah, P.
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [25] Anderson transition in two-dimensional disordered lattices with long-range coupling
    Rodríguez, A
    Malyshev, VA
    Domínguez-Adame, F
    Lemaistre, JP
    PROCEEDINGS OF THE 2000 INTERNATIONAL CONFERENCE ON EXCITONIC PROCESSES IN CONDENSED MATTER, 2001, : 360 - 363
  • [26] d-wave superconductivity in the frustrated two-dimensional periodic Anderson model
    Wu, Wei
    Tremblay, A. -M. -S.
    PHYSICAL REVIEW X, 2015, 5 (01):
  • [27] A Shadow Wave Function for the two-dimensional electron gas
    Dandrea, Lucia
    Pederiva, Francesco
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 1357 - +
  • [28] An application of the symplectic system in two-dimensional viscoelasticity
    Xu, Xinsheng
    Zhang, Weixiang
    Li, Xue
    Wang, Gaping
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2006, 44 (13-14) : 897 - 914
  • [29] Symplectic Solutions in Two-dimensional Viscoelastic Polymers
    Hu, Xiaowen
    Zhang, Weixiang
    2019 3RD INTERNATIONAL WORKSHOP ON RENEWABLE ENERGY AND DEVELOPMENT (IWRED 2019), 2019, 267
  • [30] Symplectic analysis of the two-dimensional Palatini action
    McKeon, D. G. C.
    CANADIAN JOURNAL OF PHYSICS, 2017, 95 (06) : 548 - 553