Wave function statistics at the symplectic two-dimensional Anderson transition: Bulk properties

被引:33
|
作者
Mildenberger, A.
Evers, F.
机构
[1] Univ Karlsruhe, Fak Phys, D-76128 Karlsruhe, Germany
[2] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[3] Univ Karlsruhe, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
关键词
D O I
10.1103/PhysRevB.75.041303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The wave function statistics at the Anderson transition in a two-dimensional disordered electron gas with spin-orbit coupling is studied numerically. In addition to highly accurate exponents (alpha(0)=2.172 +/- 0.002,tau(2)=1.642 +/- 0.004), we report three qualitative results. (i) The anomalous dimensions are invariant under q ->(1-q) which is in agreement with a recent analytical prediction and supports the universality hypothesis. (ii) The multifractal spectrum is not parabolic and therefore differs from behavior suspected, e.g., for (integer) quantum Hall transitions in a fundamental way. (iii) The critical fixed point satisfies conformal invariance.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Universality of Anderson transition in two-dimensional systems of symplectic symmetry class
    Sepehrinia, Reza
    PHYSICAL REVIEW B, 2010, 81 (04):
  • [2] Momentum-space signatures of the Anderson transition in a symplectic, two-dimensional, disordered ultracold gas
    Arabahmadi, Ehsan
    Schumayer, Daniel
    Gremaud, Benoit
    Miniatura, Christian
    Hutchinson, David A. W.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [3] Probing two-dimensional Anderson localization without statistics
    Leseur, O.
    Pierrat, R.
    Saenz, J. J.
    Carminati, R.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [4] Dimensionality dependence of the wave-function statistics at the Anderson transition
    Mildenberger, A
    Evers, F
    Mirlin, AD
    PHYSICAL REVIEW B, 2002, 66 (03) : 1 - 4
  • [5] Level statistics and Anderson delocalization in two-dimensional granular materials
    Zhang, Ling
    Wang, Yinqiao
    Zheng, Jie
    Sun, Aile
    Sun, Xulai
    Wang, Yujie
    Schirmacher, Walter
    Zhang, Jie
    PHYSICAL REVIEW B, 2021, 103 (10)
  • [6] Wave-function and level statistics of random two-dimensional gauge fields
    Verges, JA
    PHYSICAL REVIEW B, 1996, 54 (20): : 14822 - 14832
  • [7] Anderson Transition in the Three Dimensional Symplectic Universality Class
    Asada, Yoichi
    Slevin, Keith
    Ohtsuki, Tomi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74
  • [8] A New Universal Class of Anderson Transition in Two-Dimensional Systems
    Wang Xiangrong
    华南师范大学学报(自然科学版), 2014, 46 (06) : 134 - 135
  • [9] Scaling of level statistics and critical exponent of disordered two-dimensional symplectic systems
    Schweitzer, L
    Zharekeshev, IK
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (33) : L441 - L445
  • [10] Symplectic analysis for elastic wave propagation in two-dimensional cellular structures
    XiuHui Hou ZiChen Deng JiaXi Zhou TieQuan Liu Department of Engineering MechanicsNorthwestern Polytechnical UniversityXian ChinaState Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalian China
    Acta Mechanica Sinica, 2010, 26 (05) : 711 - 720